[1] LI J, WANG Z F. Real-time traffic sign recognition based on efficient CNNs in the wild[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 975-984.
[2] LI X D, ZHANG M, XIE Z P, et al. A fast traffic sign detection algorithm based on three-scale nested residual structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036.
李旭东, 张明, 谢志鹏, 等. 基于三尺度嵌套残差结构的交通标志快速检测算法[J]. 计算机研究与发展, 2020, 57(5): 1022-1036.
[3] KHANAL B, ALI S, SIDIBé D. Robust road signs segm-entation in color images[C]//Proceedings of the 2012 Inter-national Conference on Computer Vision Theory and Appli-cations, Rome, Feb 24-26, 2012. SciTePress, 2012: 307-310.
[4] CHEN H B, WANG Q, XU X R, et al. Line detection in traffic sign image based on improved Hough transform[J]. Optics and Precision Engineering, 2009, 17(5): 1111-1118.
陈洪波, 王强, 徐晓蓉, 等. 用改进的Hough变换检测交通标志图像的直线特征[J]. 光学精密工程, 2009, 17(5): 1111-1118.
[5] YU X C, ZHOU J, CHEN D R. Urban road traffic speed limit sign recognition method based on multi-feature fusion in color space and template matching color[J]. International Journal of Advancements in Computing Technology, 2012, 4(12): 222-232.
[6] LONG J, SHELHAMER E, DARRELL T, et al. Fully con-volutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-13, 2015. Washington: IEEE Com-puter Society, 2015: 3434-3440.
[7] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2016.
[8] ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1529-1537.
[9] BADRINARAYANAN V, KENDALL A, CIPOLLA R, et al. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[10] RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[11] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5168-5177.
[12] LIU W, RABINOVICH A, BERG A C. ParseNet: looking wider to see better[C]//Proceedings of the 2015 IEEE Con-ference on Computer Vision and Pattern Recognition, Boston, Jun 8-10, 2015. Washington: IEEE Computer Society, 2015: 27-37.
[13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[14] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239.
[15] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 833-851.
[16] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
[17] HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//Proceedings of the 2013 International Joint Conference on Neural Networks, Texas, Aug 4-9, 2013. Piscataway: IEEE, 2013: 1-8. |