[1] BADAWI E, JOURDAN G V. Cryptocurrencies emerging threats and defensive mechanisms: a systematic literature review[J]. IEEE Access, 2020, 8: 200021-200037.
[2] Sonicwall. 2023 Sonicwall cyber threat report[EB/OL]. (2023-03-23) [2023-04-24]. https://www.sonicwall.com/2023-cyber-threat-report/.
[3] PASTRANA S, SUAREZ-TANGIL G. A first look at the crypto-mining malware ecosystem: a decade of unrestricted wealth[C]//Proceedings of the Internet Measurement Conference, Amsterdam, Oct 21-23, 2019. New York: Association for Computing Machinery, 2019: 73-86.
[4] BIJMANS H L J, BOOIJ T M, DOERR C. Inadvertently making cyber criminals rich: a comprehensive study of cryptojacking campaigns at internet scale[C]//Proceedings of the 28th USENIX Security Symposium, Santa Clara, Aug 16-19, 2019. Berkeley: USENIX Association, 2019: 1627-1644.
[5] MANI G, PASUMARTI V, BHARGAVA B, et al. Decrypto pro: deep learning based cryptomining malware detection using performance counters[C]//Proceedings of the 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems, Washington, Aug 17-21, 2020. Piscataway: IEEE, 2020: 109-118.
[6] AL-RIMY B A S, MAAROF M A, ALAZAB M, et al. Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection[J]. Future Generation Computer Systems, 2021, 115: 641-658.
[7] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[8] BERECZ G J, CZIBULA I G. Hunting traits for cryptojackers[C]//Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, Prague, Jul 26-28, 2019. Francisco: SciTePress, 2019: 386-393.
[9] KARN R R, KUDVA P, HUANG H, et al. Cryptomining detection in container clouds using system calls and explainable machine learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(3): 674-691.
[10] I MU?OZ J Z, SUáREZ-VARELA J, BARLET-ROS P. Detecting cryptocurrency miners with NetFlow/IPFIX network measurements[C]//Proceedings of the 2019 IEEE International Symposium on Measurements & Networking, Catania, Jul 8-10, 2019. Piscataway: IEEE, 2019: 1-6.
[11] CAPROLU M, RAPONI S, OLIGERI G, et al. Cryptomining makes noise: detecting cryptojacking via machine learning[J]. Computer Communications, 2021, 171: 126-139.
[12] 曹传博, 郭春, 申国伟, 等. 面向行为多样期的挖矿恶意软件早期检测方法[J]. 电子学报, 2023, 51(7): 1850-1858.
CAO C B, GUO C, SHEN G W, et al. Cryptomining malware early detection method in behavioral diversity period[J]. Acta Electronica Sinica, 2023, 51(7): 1850-1858.
[13] SUN P F, LYU M D, LI H, et al. An early stage convolutional feature extracting method using for mining traffic detection[J]. Computer Communications, 2022, 193: 346-354.
[14] YING Q, YU Y, TIAN D, et al. CJSpector: a novel cryptojacking detection method using hardware trace and deep learning[J]. Journal of Grid Computing, 2022, 20(3): 1-15.
[15] TANG M, QIAN Q. Dynamic API call sequence visualisation for malware classification[J]. IET Information Security, 2019, 13(4): 367-377.
[16] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems, 2013. |