[1] 赵文清, 康怿瑾, 赵振兵, 等. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95.
ZHAO W Q, KANG Y J, ZHAO Z B, et al. A remote sensing image object detection algorithm with improved YOLOv5s[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 86-95.
[2] PISANO E D, ZONG S, HEMMINGER B M, et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated specultions in dense mammograms[J]. Journal of Digital Imaging, 1998, 11(4): 193-200.
[3] IRAHIM H, KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancment[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4): 1752-1758.
[4] 江巨浪, 刘国明, 朱柱, 等. 基于快速模糊聚类的动态多直方图均衡化算法[J]. 电子学报, 2022, 50(1): 167-176.
JIANG J L, LIU G M, ZHU Z, et al. Dynamic multi-histogram equalization algorithm based on fast fuzzy clustering[J]. Acta Electronica Sinica, 2022, 50(1): 167-176.
[5] JEBADASS J R, BALASUBRAMANIAM P. Low contrast enhancement technique for color images using interval valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization[J]. Soft Computing: A Fusion of Foun-dations, Methodologies and Applications, 2022, 26(10): 4949-4960.
[6] ZUIDERVELD K. Contrast limited adaptive histogram equa-lization[J]. Graphics Gems, 1994: 474-485.
[7] 侯利霞, 聂丰英, 万里勇. 多尺度自适应Gamma矫正的低照图像增强[J]. 云南大学学报(自然科学版), 2023, 45(1): 57-66.
HOU L X, NIE F Y, WAN L Y. Multiscale adaptive Gamma correction for low-light image enhancement[J]. Journal of Yunnan University (Natural Sciences Edition), 2023, 45(1): 57-66.
[8] DONG X, PANG Y A, WEN J G. Fast efficient algorithm for enhancement of low lighting video[C]//Proceedings of the 2011 IEEE International Conference on Multimedia & Expo, Barcelona, Jul 11-15, 2011. Piscataway: IEEE, 2011: 1-6.
[9] 王硕, 陈金玉. 自适应校正透射率的暗通道先验去雾算法[J]. 计算机工程与应用, 2021, 57(13): 207-211.
WANG S, CHEN J Y. Dark channel prior defogging algorithm for adaptive correction transmittance[J]. Computer Engineering and Applications, 2021, 57(13): 207-211.
[10] 王欣, 徐平平, 吴菲. 基于指数同态滤波耦合细节锐化规则的红外图像增强算法[J]. 电子测量与仪器学报, 2021, 35(10): 9-16.
WANG X, XU P P, WU F. Infrared image enhancement algorithm based on exponential homomorphic filtering coupled with detail sharpening rule[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 9-16.
[11] 谢晓方, 刘厚君, 张龙杰, 等. 基于渐进式生成对抗网络的舰船红外图像仿真[J]. 激光与红外, 2021, 51(4): 471-479.
XIE X F, LIU H J, ZHANG L J, et al. Infrared image simulation for warship based on progressive generative adversarial nework[J]. Laser & Infrared, 2021, 51(4): 471-479.
[12] 田文利. 基于双重滤波与锐化的遥感图像增强算法[J]. 国外电子测量技术, 2017, 36(4): 13-16.
TIAN W L. Remote sensing image enhancement algorithm based on double filtering and sharpening[J]. Foreign Electronic Measurement Technology, 2017, 36(4): 13-16.
[13] 钱军, 万里勇. 引导滤波与像素重分布的低照图像增强[J]. 光电子·激光, 2023, 34(11): 1169-1177.
QIAN J, WAN L Y. Low-light image enhancement based on guided filtering and pixel redistribution[J]. Journal of Optoelectronics·Laser, 2023, 34(11): 1169-1177.
[14] 李胜勋, 黄靖. 基于Gabor滤波和Scharr算法的手掌静脉图像增强方法[J]. 北京生物医学工程, 2023, 42(5): 488-495.
LI S X,HUANG J. Palm vein image enhancement method based on Gabor filter and Scharr algorithm[J]. Beijing Biomedical Engineering, 2023, 42(5): 488-495.
[15] GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.
[16] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.
[17] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
[18] RAHMAN Z, JOBSON D J, WOODELL G A. Multiscale retinex for color image enhancement[C]//Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Sep 16-19, 1996. Piscataway: IEEE, 1996: 1003-1006.
[19] RAHMAN Z, JOBSON D J, WOODELL G A. Retinex processing for automatic image enhancement[J]. Journal of Electronic Imaging, 2004, 13(1): 100-110.
[20] LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841.
[21] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep auto-encoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[22] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[EB/OL]. [2023-06-13]. https:// arxiv.org/abs/1808.04560.
[23] WU W, WENG J, ZHANG P, et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-20, 2022. Piscataway: IEEE, 2022: 5901-5910.
[24] LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the 2018 British Machine Vision Conference, Newcastle, Sep 2-6, 2018.Cham: Springer, 2018: 4.
[25] WANG Y, WAN R, YANG W, et al. Low-light image enhancement with normalizing flow[EB/OL]. [2023-06-13]. https://arxiv.org/abs/2109.05923.
[26] COTOGNI M, CUSANO C. TreEnhance: a tree search met-hod for low-light image enhancement[J]. Pattern Recognition, 2023, 136: 109249.
[27] ZHANG Y, LIU H, DING D. A cross-scale framework for low-light image enhancement using spatial-spectral information[J]. Computers and Electrical Engineering, 2023, 106: 108608-108621.
[28] 林荐壮, 杨文忠, 谭思翔, 等. 融合滤波增强和反转注意力网络用于息肉分割[J]. 计算机应用, 2023, 43(1): 265-272.
LIN J Z, YANG W Z, TAN S X, et al. Fusing filter enhancement and reverse attention network for polyp segmentation[J]. Journal of Computer Applications, 2023, 43(1): 265-272.
[29] 徐文晨, 樊佳庆, 宋慧慧. 基于上下文Transformer的低光照图像增强网络[J]. 计算机与数字工程, 2023, 51(1): 237-244.
XU W C, FAN J Q, SONG H H. Low-light image enhancement network based on context Transformer[J]. Computer and Digital Engineering, 2023, 51(1): 237-244.
[30] 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730.
XUE J Q, WU Q. Lightweight cross-gating Transformer for image restoration and enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730.
[31] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Trans-actions on Image Processing, 2021, 30: 2340-2349.
[32] ZHU A, ZHANG L, SHEN Y, et al. Zero-shot restoration of underexposed images via robust retinex decomposition[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo, London, Jul 6-10, 2020. Piscataway: IEEE, 2020: 1-6.
[33] ZHANG F, SHAO Y, SUN Y, et al. Unsupervised low-light image enhancement via histogram equalization prior[EB/OL]. [2023-06-13]. https://arxiv.org/abs/2112.01766.
[34] MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 5637-5646.
[35] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1780-1789.
[36] NIELSEN C J. Effect of scenario and experience on interpretation of Mach bands[J]. Journal of Endodontics, 2001, 27(11): 687-691.
[37] 傅玉川, 王植恒, 万海峰. 用广义Gabor函数的感受野模型描述的马赫带[J]. 生物化学与生物物理进展, 1993, 20(6): 478-479.
FU Y C, WANG Z H, WAN H F. Machband described by the receptive field model of generalized Gabor function[J]. Progress in Biochemistry and Biophysics, 1993, 20(6): 478-479.
[38] GUNTER K, THOMAS U, ANDREAS M, et al. Self-normalizing neural networks[EB/OL]. [2023-06-13]. https://arxiv.org/abs/1706.02515.
[39] YUAN L, SUN J. Automatic exposure correction of consumer photographs[C]//Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 771-785.
[40] ZHANG L, ZHANG L, LIU X, et al. Zero-shot restoration of backlit images using deep internal learning[C]//Proceedings of the 27th ACM International Conference on Multi-media, Nice, Oct 21-25, 2019. New York: ACM, 2019: 1623-1631.
[41] CAI J, GU S, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049-2062.
[42] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[EB/OL]. [2023-06-13]. https://arxiv.org/abs/1801.03924. |