[1] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3339-3348.
[2] CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8866-8875.
[3] ZHENG Y, HUANG D, LIU S, et al. Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 13763-13772.
[4] ZHAO L, WANG L. Task-specific inconsistency alignment for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 14197-14206.
[5] HOFFMAN J, TZENG E, PARK T, et al. CyCADA: cycle-consistent adversarial domain adaptation[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholm, Jul 10-15, 2018: 1994-2003.
[6] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251.
[7] 李岳楠, 徐浩宇, 董浩. 频域内面向目标检测的领域自适应[J]. 红外与激光工程, 2022, 51(7): 452-460.
LI Y N, XU H Y, DONG H. Domain adaptation for object detection in the frequency domain[J]. Infrared and Laser Engineering, 2022, 51(7): 452-460.
[8] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Infor-mation Processing Systems 30, Long Beach, Dec 4-9, 2017: 1195-1204.
[9] DENG J, LI W, CHEN Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 4091-4101.
[10] KURMI V K, SUBRAMANIAN V K, NAMBOODIRI V P. Domain impression: a source data free domain adaptation method[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscataway: IEEE, 2021: 615-625.
[11] HUANG J, GUAN D, XIAO A, et al. FSDR: frequency space domain randomization for domain generalization[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 6891-6902.
[12] LI Y J, DAI X, MA C Y, et al. Cross-domain adaptive teacher for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 7571-7580.
[13] CAO S, JOSHI D, GUI L Y, et al. Contrastive mean teacher for domain adaptive object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 23839-23848.
[14] CHEN C, LI J, ZHOU H Y, et al. Relation matters: foreground-aware graph-based relational reasoning for domain adaptive object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3677-3694.
[15] YANG Y, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4085-4095.
[16] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[17] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042.
[18] 孙武, 邓赵红, 娄琼丹, 等. 基于模糊规则学习的无监督异构领域自适应[J]. 计算机科学与探索, 2022, 16(2): 403-412.
SUN W, DENG Z H, LOU Q D, et al. Unsupervised heterogeneous domain adaptation with fuzzy rule learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412.
[19] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1180-1189.
[20] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2962-2971.
[21] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 1647-1657.
[22] KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 12456-12465.
[23] OUYANG S, WANG X, LYU K, et al. Pseudo-label generation-evaluation framework for cross domain weakly supervised object detection[C]//Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, Sep 19-22, 2021. Piscataway: IEEE, 2021: 724-728.
[24] SHEN Z, MAHESHWARI H, YAO W, et al. SCL: towards accurate domain adaptive object detection via gradient detach based stacked complementary losses[EB/OL]. [2023-06-24]. https://arxiv.org/abs/1911.02559.
[25] SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distri-bution alignment for adaptive object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6956-6965.
[26] XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11721-11730.
[27] 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116.
LIN J W, WANG S T. Deep adversarial-reconstruction-classification networks for unsupervised domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116.
[28] CAI Q, PAN Y, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11457-11466.
[29] ZHOU H, JIANG F, LU H. SSDA-YOLO: semi-supervised domain adaptive YOLO for cross-domain object detection[J]. Computer Vision and Image Understanding, 2023, 229: 103649.
[30] WU J, CHEN J, HE M, et al. Target-relevant knowledge pre-servation for multi-source domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 5301-5310.
[31] HE M, WANG Y, WU J, et al. Cross domain object detection by target-perceived dual branch distillation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 9570-9580.
[32] CHEN M, CHEN W, YANG S, et al. Learning domain adaptive object detection with probabilistic teacher[C]//Proceedings of the 2022 International Conference on Machine Learning, Baltimore, Jul 17-23, 2022: 3040-3055.
[33] ZHAO S, GONG M, LIU T, et al. Domain generalization via entropy regularization[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 16096-16107.
[34] HINTON G E, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2023-06-24]. https://arxiv.org/abs/1503.02531.
[35] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[36] INOUE N, FURUTA R, YAMASAKI T, et al. Cross-domain weakly-supervised object detection through progressive domain adaptation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5001-5009.
[37] HE Z, ZHANG L. Domain adaptive object detection via asymmetric tri-way faster-RCNN[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 309-324.
[38] ZHAO Z, GUO Y, SHEN H, et al. Adaptive object detection with dual multi-label prediction[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 54-69.
[39] HOU L, ZHANG Y, FU K, et al. Informative and consistent correspondence mining for cross-domain weakly supervised object detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 9929-9938.
[40] JIANG J, CHEN B, WANG J, et al. Decoupled adaptation for cross-domain object detection[C]//Proceedings of the 10th International Conference on Learning Representations, Apr 25-29, 2022.
[41] LI S, YE M, ZHU X, et al. Source-free object detection by learning to overlook domain style[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8014-8023. |