计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (7): 1705-1724.DOI: 10.3778/j.issn.1673-9418.2310064
利建铖,曹路,何锡权,廖军红
出版日期:
2024-07-01
发布日期:
2024-06-28
LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong
Online:
2024-07-01
Published:
2024-06-28
摘要: 近年来,深度学习因其具有自动提取特征的能力以及更好的分类性能而被广泛应用于各种分类任务之中。肺结节的分类研究也逐渐从手工提取特征的传统方法向基于深度学习的分类方法转变。为了更好地对CT影像下的肺结节进行良恶性分类研究,对以卷积神经网络(CNN)为主的深度学习方法在肺结节良恶性分类研究的现状进行梳理和归纳总结。首先介绍了目前常用的肺结节公开数据集,包括其内容、局限性以及下载地址。其次总结了常用的性能评价指标。然后重点介绍了近年来深度学习方法在肺结节分类中的研究工作:分别从网络结构层面和数据层面将当前肺结节分类方法归类为仅使用卷积神经网络、在卷积神经网络中引入注意力机制、多视图学习、多模态学习以及使用迁移学习、对抗神经网络这些方法;同时总结了这些分类方法的网络结构以及优缺点,并且对比了近三年的基于这些内容的肺结节分类方法在肺结节公开数据上的良恶性分类表现。最后讨论了目前肺结节分类中存在的问题并探索进一步的研究方向。
利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724.
LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724.
[1] CHHIKARA B S, PARANG K. Global cancer statistics 2022: the trends projection analysis[J]. Chemical Biology Letters, 2023, 10(1): 451. [2] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. [3] WU G X, RAZ D J. Lung cancer screening[J]. Lung Cancer: Treatment and Research, 2016, 170: 1-23. [4] 李祥霞, 李彬, 田联房, 等. 基于放射影像组学和随机森林算法的肺结节良恶性分类[J]. 华南理工大学学报(自然科学版), 2018, 46(8): 72-80. LI X X, LI B, TIAN L F, et al. Classification of benign and malignant pulmonary nodules based on radiomics and random forests algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(8): 72-80. [5] DHARA A K, MUKHOPADHYAY S, DUTTA A, et al. A combination of shape and texture features for classification of pulmonary nodules in lung CT images[J]. Journal of Digital Imaging, 2016, 29: 466-475. [6] 马圆, 田思佳, 冯巍, 等. 基于肺部PET/CT图像不同纹理特征的K最近邻分类器[J]. 北京生物医学工程, 2018, 37(1): 57-61. MA Y, TIAN S J, FENG W, et al. K-nearest neighbor classifier based on different texture features of pulmonary nodules from PET/CT images analysis[J]. Beijing Biomedical Engineering, 2018, 37(1): 57-61. [7] OROZCO H M, VILLEGAS O O V, DOMíNGUEZ H J O, et al. Lung nodule classification in CT thorax images using support vector machines[C]//Proceedings of the 2013 12th Mexican International Conference on Artificial Intelligence, Mexico, Nov 24-30, 2013. Washington: IEEE Computer Society, 2013: 277-283. [8] TARTAR A, KILI? N, AKAN A. A new method for pulmonary nodule detection using decision trees[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Jul 3-7, 2013. Piscataway: IEEE, 2013: 7355-7359. [9] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [10] SUN W, ZHENG B, QIAN W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis[J]. Computers in Biology and Medicine, 2017, 89: 530-539. [11] HUANG H, WU R, LI Y, et al. Self-supervised transfer learning based on domain adaptation for benign-malignant lung nodule classification on thoracic CT[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8): 3860-3871. [12] MASOOD A, YANG P, SHENG B, et al. Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 8: 1-13. [13] TANG N, ZHANG R, WEI Z, et al. Improving the performance of lung nodule classification by fusing structured and unstructured data[J]. Information Fusion, 2022, 88: 161-174. [14] TOMASSINI S, FALCIONELLI N, SERNANI P, et al. Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: a survey[J]. Computers in Biology and Medicine, 2022, 146: 105691. [15] NASEER I, AKRAM S, MASOOD T, et al. Lung cancer classification using modified U-Net based Lobe segmentation and nodule detection[J]. IEEE Access, 2023, 11: 60279-60291. [16] NAIK A, EDLA D R, DHARAVATH R. A deep feature concatenation approach for lung nodule classification[C]//Proceedings of the 2021 International Conference on Machine Learning and Big Data Analytics, Patna, Mar 29-30, 2021. Cham: Springer, 2022: 213-226. [17] AGARWAL A, PATNI K, RAJESWARI D. Lung cancer detection and classification based on Alexnet CNN[C]//Proceedings of the 2021 6th International Conference on Communication and Electronics Systems, Coimbatre, Jul 8-10, 2021. Piscataway: IEEE, 2021: 1390-1397. [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-07-25]. https://arxiv.org/abs/1409.1556. [19] SAIKIA T, KUMAR R, KUMAR D, et al. An automatic lung nodule classification system based on hybrid transfer learning approach[J]. SN Computer Science, 2022, 3(4): 272. [20] 王卫兵, 王卓, 徐倩, 等. 基于三维卷积神经网络的肺结节分类[J]. 哈尔滨理工大学学报, 2021, 26(4): 87-93. WANG W B, WANG Z, XU Q, et al. Lung nodule classification based on 3D convolutional neural network[J]. Journal of Harbin University of Science and Technology, 2021, 26(4): 87-93. [21] AL-HUSEINY M S, SAJIT A S. Transfer learning with GoogLeNet for detection of lung cancer[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 22(2): 1078-1086. [22] BRUNTHA P M, DHANASEKAR S, AHMED L J, et al. Inves-tigation of deep features in lung nodule classification[C]//Proceedings of the 2022 6th International Conference on Devices, Circuits and Systems, Coimbatore, Apr 21-22, 2022. Piscataway: IEEE, 2022: 67-70. [23] DODIA S, BASAVA A, PADUKUDRU ANAND M. A novel receptive field-regularized V-net and nodule classification network for lung nodule detection[J]. International Journal of Imaging Systems and Technology, 2022, 32(1): 88-101. [24] WU R, HUANG H. Multi-scale multi-view model based on ensemble attention for benign-malignant lung nodule classification on chest CT[C]//Proceedings of the 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Beijing, Nov 5-7, 2022. Piscataway: IEEE, 2022: 1-6. [25] LIU D, LIU F, TIE Y, et al. Res-trans networks for lung nodule classification[J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(6): 1059-1068. [26] BRUNTHA P M, PANDIAN S I A, ANITHA J, et al. A novel hybridized feature extraction approach for lung nodule classification based on transfer learning technique[J]. Journal of Medical Physics, 2022, 47(1): 1-9. [27] HALDER A, DEY D. Atrous convolution aided integrated framework for lung nodule segmentation and classification[J]. Biomedical Signal Processing and Control, 2023, 82: 104527. [28] 叶枫, 王路遥, 洪卫, 等. 基于SE-CapsNet的肺结节良恶性诊断研究[J]. 中国生物医学工程学报, 2021, 40(1): 71-80. YE F, WANG L Y, HONG W, et al. Benign and malignant diagnosis of pulmonary nodules based on SE-CapsNet[J]. Chinese Journal of Biomedical Engineering, 2021, 40(1): 71-80. [29] NAIK A, EDLA D R, KUPPILI V. Lung nodule classification on computed tomography images using fractalnet[J]. Wireless Personal Communications, 2021, 119: 1209-1229. [30] 曹斌, 杨锋, 马金刚. 深度学习方法在肺结节诊断中的应用[J]. 激光与光电子学进展, 2021, 58(16): 104-117. CAO B, YANG F, MA J G. Application of deep learning methods in diagnosis of lung nodules[J]. Laser & Optoelectronics Progress, 2021, 58(16): 104-117. [31] YAN X, PANG J, QI H, et al. Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: a comparison between 2D and 3D strategies[C]//Proceedings of the 2016 Asian Conference on Computer Vision, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2017: 91-101. [32] KALIYUGARASAN S K, LUNDERVOLD A, LUNDERVOLD A S. Pulmonary nodule classification in lung cancer from 3D thoracic CT scans using fastai and MONAI[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2021, 6(7): 83-89. [33] ZHANG G, LIN L, WANG J. Lung nodule classification in CT images using 3D DenseNet[C]//Proceedings of the 6th International Conference on Electronic Technology and Information Science, Harbin, Jan 8-10, 2021: 012155. [34] HUANG H, LI Y, WU R, et al. Benign-malignant classification of pulmonary nodule with deep feature optimization framework[J]. Biomedical Signal Processing and Control, 2022, 76: 103701. [35] HALDER A, CHATTERJEE S, DEY D. Adaptive morphology aided 2-pathway convolutional neural network for lung nodule classification[J]. Biomedical Signal Processing and Control, 2022, 72: 103347. [36] 尹智贤, 夏克文, 武盼盼. 多模式特征融合网络肺结节良恶性分类方法[J]. 计算机工程与应用, 2023, 59(23): 228-236. YIN Z X, XIA K W, WU P P. Classification of benign and malignant pulmonary nodules by multimodal feature fusion network[J]. Computer Engineering and Applications, 2023, 59(23): 228-236. [37] XIE Y, XIA Y, ZHANG J, et al. Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec, Sep 11-13, 2017. Cham: Springer, 2017: 656-664. [38] LYU J, BI X, LING S H. Multi-level cross residual network for lung nodule classification[J]. Sensors, 2020, 20(10): 2837. [39] ZHANG M, LI H, PAN S, et al. Convolutional neural networks-based lung nodule classification: a surrogate-assisted evolutionary algorithm for hyperparameter optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(5): 869-882. [40] MKINDU H, WU L, ZHAO Y, et al. Lung nodule classification of CT images based on the deep learning algorithms[C]//Proceedings of the 2021 5th International Conference on Imaging, Signal Processing and Communications, Kumamoto, Jul 23-25, 2021. Piscataway:IEEE, 2021: 30-34. [41] SHEN S, HAN S X, ABERLE D R, et al. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification[J]. Expert Systems with Applications, 2019, 128: 84-95. [42] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2023, 18(2): 345-362. QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2023, 18(2): 345-362. [43] 匡健, 洪敏杰, 刘星辰, 等. 基于注意力机制的肺结节分类研究[J]. 计算机应用与软件, 2022, 39(1): 163-167. KUANG J, HONG M J, LIU X C, et al. Classification of pulmonary nodules based on attention mechanism[J]. Computer Applications and Software, 2022, 39(1): 163-167. [44] 郭峰, 黄冕, 刘利军, 等. 基于多模型融合方法的肺结节良恶性分类[J]. 光电子·激光, 2021, 32(4): 389-394. GUO F, HUANG M, LIU L J, et al. Multi-model fusion classification method for benign and malignant lung nodules with embedded attention mechanism[J]. Journal of Optoelectronics·Laser, 2021, 32(4): 389-394. [45] 杨杨, 李晓琴, 韩振波, 等. 基于三维多视角挤压激励卷积神经网络的肺结节良恶性分类研究[J]. 生物医学工程学杂志, 2022, 39(3): 452-461. YANG Y, LI X Q, HAN Z B, et al. Research on classification of benign and malignant lung nodules based on three dimensional multi-view squeeze-and-excitation convolutional neural network[J]. Journal of Biomedical Engineering, 2022, 39(3): 452-461. [46] RICKMANN A M, ROY A G, SARASUA I, et al. ‘Project & excite’ modules for segmentation of volumetric medical scans[C]//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 39-47. [47] 费熳熳, 陈春晓, 王亮, 等. 基于MDRA-net的肺结节良恶性分类方法[J]. 激光与光电子学进展, 2023, 60(4): 402-406. FEI M M, CHEN C X, WANG L, et al. Classification method of benign and malignant pulmonary nodules based on MDRA-net[J]. Laser & Optoelectronics Progress, 2023, 60(4): 402-406. [48] 刘雲, 王一达, 张成秀, 等. 基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J]. 中国医学物理学杂志, 2022, 39(11): 1441-1447. LIU Y, WANG Y D, ZHANG C X, et al. Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J]. Chinese Journal of Medical Physics, 2022, 39(11): 1441-1447. [49] 丁其川, 王力, 刘成. 融合长距离信道注意力与病理特征的肺结节分类[J]. 东北大学学报(自然科学版), 2023, 44(4): 476-485. DING Q C, WANG L, LIU C. Classification of pulmonary nodule by combining long-distance channel attention and pathological feature[J]. Journal of Northeastern University (Natural Science), 2023, 44(4): 476-485. [50] 张琮昊, 迟子秋, 王占全, 等. 基于移动窗口注意力机制和编码解码器的肺结节分类方法[J]. 大连工业大学学报, 2024, 43(1): 73-78. ZHANG C H, CHI Z Q, WANG Z Q, et al. Pulmonary nodule classification method based on shifted window attention and codec[J]. Journal of Dalian Polytechnic University, 2024, 43(1): 73-78. [51] KIM E, KIM S, SEO M, et al. XProtoNet: diagnosis in chest radiography with global and local explanations[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 15719-15728. [52] JAUME G, SONG A H, MAHMOOD F. Integrating context for superior cancer prognosis[J]. Nature Biomedical Engineering, 2022, 6(12): 1323-1325. [53] YI L, ZHANG L, XU X, et al. Multi-label Softmax networks for pulmonary nodule classification using unbalanced and dependent categories[J]. IEEE Transactions on Medical Imaging, 2022, 42(1): 317-328. [54] HERNáNDEZ-RODRíGUEZ J, CABRERO-FRAILE F J, RODRíGUEZ-CONDE M J. Convolutional neural networks for multi-scale lung nodule classification in CT: influence of hyperparameter tuning on performance[J]. TEM Journal, 2022, 11(1): 297-306. [55] SHEN W, ZHOU M, YANG F, et al. Multi-scale convolutional neural networks for lung nodule classification[C]//Proceedings of the 24th International Conference on Information Processing in Medical Imaging, Sleat, Jun 28-Jul 3, 2015. Cham: Springer, 2015: 588-599. [56] LIU K, KANG G. Multiview convolutional neural networks for lung nodule classification[J]. International Journal of Imaging Systems and Technology, 2017, 27(1): 12-22. [57] 张修聪, 刘杰, 张光磊. 基于多尺度迁移学习的肺结节良恶性分类[J]. 现代计算机, 2022, 28(5): 76-81. ZHANG X C, LIU J, ZHANG G L. Classification of benign and malignant lung nodules based on multi-scale transfer learning[J]. Modern Computer, 2022, 28(5): 76-81. [58] KANG G, LIU K, HOU B, et al. 3D multi-view convolutional neural networks for lung nodule classification[J]. PLoS One, 2017, 12(11): e0188290. [59] SHEN W, ZHOU M, YANG F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J]. Pattern Recognition, 2017, 61: 663-673. [60] 杨建利, 朱德江, 邵嘉俊, 等. 三维多尺度交叉融合网络肺结节分类研究[J]. 计算机工程与应用, 2022, 58(14): 121-125. YANG J L, ZHU D J, SHAO J J, et al. Research on classification of pulmonary nodules by three-dimensional multi-scale cross fusion network[J]. Computer Engineering and Applications, 2022, 58(14): 121-125. [61] DU R, YU W, WANG H, et al. Multi-view active fine-grained visual recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, Paris, Oct 2-6, 2023. Piscataway: IEEE, 2023: 1568-1578. [62] SAHU P, YU D, DASARI M, et al. A lightweight multi-section CNN for lung nodule classification and malignancy estimation[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(3): 960-968. [63] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 11-18, 2015. Washington: IEEE Computer Society, 2015: 945-953. [64] XIE Y, XIA Y, ZHANG J, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J]. IEEE Transactions on Medical Imaging, 2018, 38(4): 991-1004. [65] ZHAI P, TAO Y, CHEN H, et al. Multi-task learning for lung nodule classification on chest CT[J]. IEEE Access, 2020, 8: 180317-180327. [66] BONAVITA I, RAFAEL-PALOU X, CERESA M, et al. Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline[J]. Computer Methods and Programs in Biomedicine, 2020, 185: 105172. [67] LIU X, HOU F, QIN H, et al. Multi-view multi-scale CNNs for lung nodule type classification from CT images[J]. Pattern Recognition, 2018, 77: 262-275. [68] KIM S, LEE N, LEE J, et al. Heterogeneous graph learning for multi-modal medical data analysis[C]//Proceedings of the 2023 AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2023. Menlo Park: AAAI, 2023: 5141-5150. [69] 张帅威, 冯旭鹏, 刘利军, 等. 面向肺结节多语义特征分类的不确定性多任务损失方法[J]. 光电子·激光, 2021, 32(1): 47-55. ZHANG S W, FENG X P, LIU L J, et al. Uncertain multi-task loss method for multi-semantic feature classification of lung nodules[J]. Journal of Optoelectronics·Laser, 2021, 32(1): 47-55. [70] 易乐, 张蕾. 基于辅助监督信号的肺结节良恶性分类[J]. 现代计算机, 2021(16): 88-93. YI L, ZHANG L. Benign-malignant pulmonary nodules classification using auxiliary supervised signals[J]. Modern Computer, 2021(16): 88-93. [71] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76. [72] SATHYAN H, PANICKER J V. Lung nodule classification using deep ConvNets on CT images[C]//Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies, Bangalore, Jul 10-12, 2018. Piscataway: IEEE, 2018: 1-5. [73] NISHIO M, SUGIYAMA O, YAKAMI M, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning[J]. PLoS One, 2018, 13(7): e0200721. [74] DA NóBREGA R V M, PEIXOTO S A, DA SILVA S P P, et al. Lung nodule classification via deep transfer learning in CT lung images[C]//Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems, Karlstad, Jun 18-21, 2018. Washington: IEEE Computer Society, 2018: 244-249. [75] JAIN S, SALMAN H, KHADDAJ A, et al. A data-based perspective on transfer learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 3613-3622. [76] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 4037-4058. [77] WU R, LIANG C, LI Y, et al. Self-supervised transfer learning framework driven by visual attention for benign-malignant lung nodule classification on chest CT[J]. Expert Systems with Applications, 2023, 215: 119339. [78] AZMAN M S, ROSSI F, ZULKARNAIN N, et al. Classification of lung nodule CT images using GAN variants and CNN[C]//Proceedings of the 2022 IEEE International Conference on Computing, Kota Kinabalu, Nov 14-16, 2022. Piscataway: IEEE, 2022: 310-315. [79] APOSTOLOPOULOS I D, PAPATHANASIOU N D, PANAYIOTAKIS G S. Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning[J]. Biocybernetics and Biomedical Engineering, 2021, 41(4): 1243-1257. [80] SHI P, YU W, LIU Y, et al. Dual convolutional neural network for lung nodule classification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, Jul 18-22, 2021. Piscataway: IEEE, 2021: 1-7. [81] 池洪泽, 杨静. 融合多尺度决策的肺结节分类研究[J]. 电子设计工程, 2022, 30(22): 188-193. CHI H Z, YANG J. Classification of pulmonary nodules based on multi-scale decision-making[J]. Electronic Design Engineering, 2022, 30(22): 188-193. [82] Al-SHABI M, SHAK K, TAN M. 3D axial-attention for lung nodule classification[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(8): 1319-1324. [83] CHEN Y, WANG Y, HU F, et al. LDNNET: towards robust classification of lung nodule and cancer using lung dense neural network[J]. IEEE Access, 2021, 9: 50301-50320. [84] MKINDU H, WU L, ZHAO Y, et al. Lung nodule classification of CT images using channel and spatial attention CNN with Bayesian optimization[C]//Proceedings of the 2021 Global Reliability and Prognostics and Health Management, Nanjing, Oct 15-17, 2021. Piscataway: IEEE, 2021: 1-6. [85] NAIK A, EDLA D R. Lung nodule classification using combination of CNN, second and higher order texture features[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(5): 5243-5251. [86] DODIA S, ANNAPPA B, PADUKUDRU M A. A novel artificial intelligence-based lung nodule segmentation and classification system on CT scans[C]//Proceedings of the 2021 International Conference on Computer Vision and Image Processing, Dec 3-5, 2021. Cham: Springer, 2021: 552-564. [87] 曹真, 谢红薇, 张昊, 等. 基于改进DenseNet网络的肺结节检测仿真[J]. 计算机仿真, 2022, 39(4): 459-464. CAO Z, XIE H W, ZHANG H, et al. Simulation of pulmonary nodule detection based on improved DenseNet network[J]. Computer Simulation, 2022, 39(4): 459-464. [88] SAIHOOD A, KARSHENAS H, NILCHI A R N. Deep fusion of gray level co-occurrence matrices for lung nodule classification[J]. PLoS One, 2022, 17(9): e0274516. [89] WU K, PENG B, ZHAI D. Multi-granularity dilated transformer for lung nodule classification via local focus scheme[J]. Applied Sciences, 2022, 13(1): 377. [90] SAHAYA JENIBA J, MILTON A. A multilevel self-attention based segmentation and classification technique using directional hexagonal mixed pattern algorithm for lung nodule detection in thoracic CT image[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1496-1510. [91] 李伟铭, 李强, 高艳, 等. 基于多模态PET/CT图像构建良恶性肺结节稀疏编码分类模型[J]. 中国卫生统计, 2023, 40(1): 95-98. LI W M, LI Q, GAO Y, et al. Constructing a sparse coding classification model for benign and malignant pulmonary nodules based on multi-modal PET/CT images[J]. Chinese Journal of Health Statistics, 2023, 40(1): 95-98. [92] BALCI M A, BATRANCEA L M, AKGüLLER ?, et al. A series-based deep learning approach to lung nodule image classification[J]. Cancers, 2023, 15(3): 843. [93] QIAO J, FAN Y, ZHANG M, et al. Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule[J]. Biomedical Signal Processing and Control, 2023, 79: 104217. [94] DL M, DP M. An Improved convolution neural network and modified regularized K-means-based automatic lung nodule detection and classification[J]. Journal of Digital Imaging, 2023, 36(4): 1431-1446. |
[1] | 叶庆文, 张秋菊. 采用通道像素注意力的多标签图像识别[J]. 计算机科学与探索, 2024, 18(8): 2109-2117. |
[2] | 汪有崧, 裴峻鹏, 李增辉, 王伟. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978. |
[3] | 侯鑫, 王艳, 王绚, 范伟. 全景影像在城市研究中的应用进展综述[J]. 计算机科学与探索, 2024, 18(7): 1661-1682. |
[4] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[5] | 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437. |
[6] | 蒲秋梅, 殷帅, 李正茂, 赵丽娜. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. |
[7] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[8] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[9] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[10] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[11] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[12] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[13] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[14] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[15] | 考文涛, 李明, 马金刚. 卷积神经网络在结直肠息肉辅助诊断中的应用综述[J]. 计算机科学与探索, 2024, 18(3): 627-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||