[1] SCHONFELD A, MCNIEL D, TOYOSHIMA T, et al. Cyberbullying and adolescent suicide[J]. Journal of the American Academy of Psychiatry and the Law, 2023, 51(1): 112-119.
[2] 中国青年报.65.3%受访青年表示自己或周围人遭遇过网络暴力[EB/OL] (2023-06-20) [2024-06-12]. http://tech.youth. cn/wzlb/202306/t20230620_14596022.htm.
The China Youth Daily. 65.3% of youth said themselves or people around you faced violence[EB/OL] (2023-06-20) [2024-06-12]. http://http://tech.youth.cn/wzlb/202306/t20230620_14596022.htm.
[3] FERRARA E. Social bot detection in the age of ChatGPT: challenges and opportunities[J]. First Monday, 2023, 28(6).
[4] HIMELEIN-WACHOWIAK M, GIORGI S, DEVOTO A, et al. Bots and misinformation spread on social media: implications for COVID-19[J]. Journal of Medical Internet Research, 2021, 23(5): e26933.
[5] SHI W, LIU D Y, YANG J, et al. Social bots’ sentiment engagement in health emergencies: a topic-based analysis of the COVID-19 pandemic discussions on twitter[J]. International Journal of Environmental Research and Public Health, 2020, 17(22): 8701.
[6] DUKIC D, KECA D, STIPIC D. Are you human? Detecting bots on Twitter using BERT[C]//Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics.. Piscataway: IEEE, 2020: 631-636.
[7] CRESCI S. A decade of social bot detection[J]. Communications of the ACM, 2020, 63(10): 72-83.
[8] 韩竹轩, 卜凡亮, 侯智文, 等. 改进KGAT的恐怖组织空间行为预测方法[J/OL]. 计算机科学与探索 [2024-07-10]. http://kns.cnki.net/kcms/detail/11.5602.tp.20240711.436.002. html.
HAN Z X, BU F L, HOU Z W, et al. Improved KGAT method for spatial behavior prediction of terrorist organizations[J/OL]. Journal of Frontiers of Computer Science and Technology [2024-07-15]. http://kns.cnki.net/kcms/detail/11.5602. tp.20240711.1436.002.html..
[9] BEHROUZ A, HASHEMI F. Graph Mamba: towards learning on graphs with state space models[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 119-130.
[10] CHEN H Y, XU Z, YEH C M, et al. Masked graph transformer for large-scale recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 2502-2506.
[11] SUN Y D, ZHU D J, WANG Y S, et al. SpikeGraphormer: a high-performance graph transformer with spiking graph attention[EB/OL]. [2024-07-15]. https://arxiv.org/abs/2403. 15480.
[12] HAMED S, AMEYA V, BALAJI V, et al. Exphormer: scaling graph transformers with expander graphs[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[13] ALOTHALI E, ZAKI N, MOHAMED E A, et al. Detecting social bots on Twitter: a literature review[C]//Proceedings of the 2018 International Conference on Innovations in Information Technology. Piscataway: IEEE, 2018: 175-180.
[14] KUDUGUNTA S, FERRARA E. Deep neural networks for bot detection[J]. Information Sciences, 2018, 467: 312-322.
[15] MILLER Z, DICKINSON B, DEITRICK W, et al. Twitter spammer detection using data stream clustering[J]. Information Sciences, 2014, 260: 64-73.
[16] HAYAWI K, MATHEW S, VENUGOPAL N, et al. DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data[J]. Social Network Analysis and Mining, 2022, 12(1): 43.
[17] WILLIAMS E M, NOVAK V, BLACKWELL D, et al. Homophily and transitivity in bot disinformation networks[C]//Proceedings of the 2020 7th International Conference on Social Networks Analysis, Management and Security. Piscataway: IEEE, 2020: 1-7.
[18] 姜钰棋, 侯智文, 王一帆, 等. 社交平台不平衡文本数据处理与应用研究[J]. 计算机科学与探索, 2024, 18(9): 2370-2383.
JIANG Y Q, HOU Z W, WANG Y F, et al. Research on processing and application of imbalanced textual data on social platforms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2370-2383.
[19] 郭奕, 徐亮, 熊雪军. 社交网络中意见领袖挖掘方法综述[J]. 计算机科学与探索, 2021, 15(11): 2077-2092.
GUO Y, XU L, XIONG X J. Survey on methods of opinion leader mining in social networks[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2077-2092.
[20] ALI ALHOSSEINI S, BIN TAREAF R, NAJAFI P, et al. Detect me if you can: spam bot detection using inductive representation learning[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 148-153.
[21] FENG S B, WAN H R, WANG N N, et al. BotRGCN: Twitter bot detection with relational graph convolutional networks[C]//Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2021: 236-239.
[22] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2312.00752.
[23] MANZIL Z, GURU G, AVINAVA D, et al. Big bird: transformers for longer sequences[C]//Advances in Neural Information Processing Systems 33, 2020: 17283-17297.
[24] WANG S, LI B, KHABSA M, et al. Linformer: self-attention with linear complexity[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2006.04768.
[25] LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2404.19756.
[26] GENET R, INZIRILLO H. TKAN: temporal Kolmogorov-Arnold networks[EB/OL]. [2024-07-18]. https://arxiv.org/abs/2405.07344.
[27] GENET R, INZIRILLO H. A temporal Kolmogorov-Arnold transformer for time series forecasting[EB/OL]. [2024-07-18]. https://arxiv.org/abs/2406.02486.
[28] FENG F L, HE X N, ZHANG H W, et al. Cross-GCN: enhancing graph convolutional network with K-order feature interactions[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 225-236.
[29] ZHU J, YAN Y J, ZHAO L X, et al. Beyond homophily in graph neural networks[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 7793-7804.
[30] DEHGHAN A, SIUTA K, SKORUPKA A, et al. Detecting bots in social-networks using node and structural embeddings[J]. Journal of Big Data, 2023, 10(1): 119.
[31] ZHOU M, FENG W Z, ZHU Y F, et al. Semi-supervised social bot detection with initial residual relation attention networks[C]//Proceedings of the 2023 European Conference on Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. Cham: Springer, 2023: 207-224.
[32] FENG S B, WAN H R, WANG N N, et al. TwiBot-20: a comprehensive Twitter bot detection benchmark[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 4485-4494.
[33] FENG S B, TAN Z X, WAN H R, et al. TwiBot-22: towards graph-based twitter bot detection[EB/OL]. [2014-07-18]. https://arxiv.org/abs/2206.04564.
[34] MEIROM E, MARON H, MANNOR S, et al. Controlling graph dynamics with reinforcement learning and graph neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 7565-7577.
[35] ZHANG M, SAAB K K, POLI M, et al. Effectively modeling time series with simple discrete state spaces[EB/OL]. [2024-07-18]. https://arxiv.org/abs/2303.09489.
[36] FONSECA ABREU J V, GHEDINI RALHA C, COSTA GONDIM J J. Twitter bot detection with reduced feature set[C]//Proceedings of the 2020 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2020: 1-6.
[37] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2024-07-18]. https://arxiv.org/abs/1907.11692.
[38] LV Q S, DING M, LIU Q, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1150-1160.
[39] YANG K-C, VAROL O, HUI P-M, et al. Scalable and generalizable social bot detection through data selection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1096-1103.
[40] FENG S B, TAN Z X, LI R, et al. Heterogeneity-aware Twitter bot detection with relational graph transformers[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4): 3977-3985.
[41] LIU Y H, TAN Z X, WANG H, et al. BotMoE: Twitter bot detection with community-aware mixtures of modal-specific experts[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 485-495. |