[1] LIN J J, CHEN P F, ZHENG Z B. Microscope: pinpoint performance issues with causal graphs in micro-service environments[C]//Proceedings of the 16th International Conference on Service-Oriented Computing. Cham: Springer, 2018: 3-20.
[2] YU G B, CHEN P F, ZHENG Z B. Microscaler: cost-effective scaling for microservice applications in the cloud with an online learning approach[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 1100-1116.
[3] ZHOU X, PENG X, XIE T, et al. Fault analysis and debugging of microservice systems: industrial survey, benchmark system, and empirical study[J]. IEEE Transactions on Software Engineering, 2021, 47(2): 243-260.
[4] 李汉章, 严宣辉, 李镇力, 等. 面向多变量时间序列异常检测的双图注意力网络模型[J]. 计算机科学与探索, 2025, 19(4): 1048-1064.
LI H Z, YAN X H, LI Z L, et al. Dual graph attention model for multivariate time series anomaly detection[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064.
[5] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404.
[6] MA M H, ZHANG S L, CHEN J J, et al. Jump-starting multivariate time series anomaly detection for online service systems[C]//Proceedings of the 2021 USENIX Annual Technical Conference, 2021: 413-426.
[7] LEE C, YANG T Y, CHEN Z B, et al. Maat: performance metric anomaly anticipation for cloud services with conditional diffusion[C]//Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2023: 116-128.
[8] 杨超城, 严宣辉, 陈容均, 等. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754.
YANG C C, YAN X H, CHEN R J, et al. Time series anomaly detection model with dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754.
[9] 王沐贤, 丁小欧, 王宏志, 等. 基于相关性的多维时序数据异常溯源方法[J]. 计算机科学与探索, 2021, 15(11): 2142-2150.
WANG M X, DING X O, WANG H Z, et al. Correlation-based method for tracing multi-dimensional time series data anomalies[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2142-2150.
[10] DU M, LI F F, ZHENG G N, et al. DeepLog: anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1285-1298.
[11] MENG W, LIU Y, ZHU Y, et al. Loganomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4739-4745.
[12] LIU P, XU H W, OUYANG Q Y, et al. Unsupervised detection of microservice trace anomalies through service-level deep Bayesian networks[C]//Proceedings of the 2020 IEEE 31st International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2020: 48-58.
[13] CAI Y, HAN B, SU J S, et al. TraceModel: an automatic anomaly detection and root cause localization framework for microservice systems[C]//Proceedings of the 2021 17th International Conference on Mobility, Sensing and Networking. Piscataway: IEEE, 2022: 512-519.
[14] ZHAO C Y, MA M H, ZHONG Z Y, et al. Robust multimodal failure detection for microservice systems[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 5639-5649.
[15] ZHANG S L, JIN P X, LIN Z H, et al. Robust failure diagnosis of microservice system through multimodal data[J]. IEEE Transactions on Services Computing, 2023, 16(6): 3851-3864.
[16] ZHAO N W, CHEN J J, YU Z Y, et al. Identifying bad software changes via multimodal anomaly detection for online service systems[C]//Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2021: 527-539.
[17] LEE C, YANG T Y, CHEN Z B, et al. Eadro: an end-to-end troubleshooting framework for microservices on multi-source data[C]//Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 1750-1762.
[18] ZHANG C X, PENG X, SHA C F, et al. DeepTraLog: trace-log combined microservice anomaly detection through graph-based deep learning[C]//Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering. Piscataway: IEEE, 2022: 623-634.
[19] LEE C, YANG T Y, CHEN Z B, et al. Heterogeneous anomaly detection for software systems via semi-supervised cross-modal attention[C]//Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 1724-1736.
[20] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2025-01-26]. https://arxiv.org/abs/1312. 6114.
[21] HE P J, ZHU J M, ZHENG Z B, et al. Drain: an online log parsing approach with fixed depth tree[C]//Proceedings of the 2017 IEEE International Conference on Web Services. Piscataway: IEEE, 2017: 33-40.
[22] DU M, LI F F. Spell: streaming parsing of system event logs[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2017: 859-864.
[23] KONG S Y, AI J, LU M Y. CL-MMAD: a contrastive learning based multimodal software runtime anomaly detection method[J]. Applied Sciences, 2023, 13(6): 3596.
[24] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[25] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2025-01-26]. https://arxiv.org/abs/1412. 3555.
[26] ZHOU L W, ZENG Q K, LI B. Hybrid anomaly detection via multihead dynamic graph attention networks for multivariate time series[J]. IEEE Access, 2022, 10: 40967-40978.
[27] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395.
[28] ZHOU X, PENG X, XIE T, et al. Benchmarking microservice systems for software engineering research[C]//Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. New York: ACM, 2018: 323-324.
[29] GAN Y, ZHANG Y Q, CHENG D L, et al. An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2019: 3-18. |