Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 448-457.DOI: 10.3778/j.issn.1673-9418.2009009
• Graphics and Image • Previous Articles Next Articles
ZHAN Tianming1,2, SONG Bo1,+(), SUN Le3, WAN Minghua1, YANG Guowei1
Received:
2020-09-04
Revised:
2020-11-20
Online:
2022-02-01
Published:
2020-12-09
About author:
ZHAN Tianming, born in 1984, Ph.D., associate professor, M.S. supervisor. His research interests include hyperspectral image processing and deep learning.Supported by:
詹天明1,2, 宋博1,+(), 孙乐3, 万鸣华1, 杨国为1
通讯作者:
+ E-mail: mg1909003@stu.nau.edu.cn作者简介:
詹天明(1984—),男,江苏高邮人,博士,副教授,硕士生导师,主要研究方向为高光谱图像处理、深度学习。基金资助:
CLC Number:
ZHAN Tianming, SONG Bo, SUN Le, WAN Minghua, YANG Guowei. Hyperspectral Change Detection Using Collaborative Sparsity and Nonlocal Low-Rank Tensor[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 448-457.
詹天明, 宋博, 孙乐, 万鸣华, 杨国为. 高光谱协同稀疏与非局部低秩张量变化检测[J]. 计算机科学与探索, 2022, 16(2): 448-457.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009009
数据集 | 3×3 | 5×5 | 7×7 |
---|---|---|---|
Farmland | 0.981 5 | 0.981 0 | 0.976 4 |
UASFC1 | 0.986 0 | 0.982 6 | 0.979 5 |
UASFC2 | 0.994 5 | 0.992 0 | 0.983 6 |
Table 1 OA values of different scales image blocks on three datasets
数据集 | 3×3 | 5×5 | 7×7 |
---|---|---|---|
Farmland | 0.981 5 | 0.981 0 | 0.976 4 |
UASFC1 | 0.986 0 | 0.982 6 | 0.979 5 |
UASFC2 | 0.994 5 | 0.992 0 | 0.983 6 |
方法 | 指标 | 数据集 | |||
---|---|---|---|---|---|
Farmland | UASFC1 | UASFC2 | |||
SVM[ | OA | 0.937 6 | 0.942 4 | 0.881 0 | |
Kappa | 0.848 3 | 0.706 6 | 0.684 8 | ||
时间/s | 504 | 99 | 16 | ||
CNN[ | OA | 0.918 5 | 0.913 9 | 0.890 2 | |
Kappa | 0.794 9 | 0.558 5 | 0.669 9 | ||
时间/s | 931 | 449 | 137 | ||
GETNET[ | OA | 0.975 3 | 0.949 9 | 0.943 0 | |
Kappa | 0.939 4 | 0.747 2 | 0.824 9 | ||
时间/s | 515 | 268 | 82 | ||
NLLRSU[ | OA | 0.955 5 | 0.941 5 | 0.951 5 | |
Kappa | 0.896 0 | 0.710 5 | 0.797 0 | ||
时间/s | 3 517 | 1 439 | 409 | ||
GTR[ | OA | 0.980 5 | 0.969 2 | 0.963 0 | |
Kappa | 0.953 2 | 0.845 6 | 0.831 0 | ||
时间/s | 62 | 46 | 15 | ||
本文方法 | CST | OA | 0.971 2 | 0.972 5 | 0.981 9 |
Kappa | 0.931 5 | 0.844 7 | 0.919 1 | ||
时间/s | 1 628 | 634 | 203 | ||
CSNLRT | OA | 0.981 5 | 0.986 0 | 0.994 5 | |
Kappa | 0.959 0 | 0.939 0 | 0.978 4 | ||
时间/s | 3 426 | 1 328 | 394 |
Table 2 Experimental results of different methods on 3 datasets
方法 | 指标 | 数据集 | |||
---|---|---|---|---|---|
Farmland | UASFC1 | UASFC2 | |||
SVM[ | OA | 0.937 6 | 0.942 4 | 0.881 0 | |
Kappa | 0.848 3 | 0.706 6 | 0.684 8 | ||
时间/s | 504 | 99 | 16 | ||
CNN[ | OA | 0.918 5 | 0.913 9 | 0.890 2 | |
Kappa | 0.794 9 | 0.558 5 | 0.669 9 | ||
时间/s | 931 | 449 | 137 | ||
GETNET[ | OA | 0.975 3 | 0.949 9 | 0.943 0 | |
Kappa | 0.939 4 | 0.747 2 | 0.824 9 | ||
时间/s | 515 | 268 | 82 | ||
NLLRSU[ | OA | 0.955 5 | 0.941 5 | 0.951 5 | |
Kappa | 0.896 0 | 0.710 5 | 0.797 0 | ||
时间/s | 3 517 | 1 439 | 409 | ||
GTR[ | OA | 0.980 5 | 0.969 2 | 0.963 0 | |
Kappa | 0.953 2 | 0.845 6 | 0.831 0 | ||
时间/s | 62 | 46 | 15 | ||
本文方法 | CST | OA | 0.971 2 | 0.972 5 | 0.981 9 |
Kappa | 0.931 5 | 0.844 7 | 0.919 1 | ||
时间/s | 1 628 | 634 | 203 | ||
CSNLRT | OA | 0.981 5 | 0.986 0 | 0.994 5 | |
Kappa | 0.959 0 | 0.939 0 | 0.978 4 | ||
时间/s | 3 426 | 1 328 | 394 |
[1] | 董燕妮, 杜博, 张乐飞, 等. 基于局域自适应信息理论测度学习的高光谱目标探测方法[J]. 武汉大学学报(信息科学版), 2018, 43(8):1271-1277. |
DONG Y N, DU B, ZHANG L F, et al. Hyperspectral target detection based on locally adaptive information-theoretic metric learning method[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8):1271-1277. | |
[2] | 佟国峰, 李勇, 丁伟利, 等. 遥感影像变化检测算法综述[J]. 中国图象图形学报, 2015, 20(12):1561-1571. |
TONG G F, LI Y, DING W L, et al. Review of remote sensing image change detection[J]. Journal of Image and Graphics, 2015, 20(12):1561-1571. | |
[3] |
LUO F, DU B, ZHAN G L, et al. Feature learning using spatial-spectral hypergraph discriminant analysis for hyper-spectral image[J]. IEEE Transactions on Cybernetics, 2019, 49(7):2406-2419.
DOI URL |
[4] |
ZHANG L F, ZHANG L P, DU B, et al. Hyperspectral image unsupervised classification by robust manifold matrix factori-zation[J]. Information Sciences, 2019, 485:154-169.
DOI URL |
[5] |
ZHANG L F, ZHANG Q, DU B, et al. Simultaneous spectral-spatial feature selection and extraction for hyperspectral images[J]. IEEE Transactions on Cybernetics, 2018, 48(1):16-28.
DOI URL |
[6] | MALILA W A. Change vector analysis: an approach for detecting forest changes with landsat[C]//Proceedings of the 1980 Machine Processing of Remotely Sensed Data Symposium, Jun 3-6, 1980. Piscataway: IEEE, 1980: 326-335. |
[7] |
BAISANTRY M, NEGI D S, MANOCHA O P. Change vector analysis using enhanced PCA and inverse triangular function-based thresholding[J]. Defence Science Journal, 2012, 62(4):236-242.
DOI URL |
[8] |
NIELSEN A A, CONRADSEN K, SIMPSON J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1):1-19.
DOI URL |
[9] |
NIELSEN A A. The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007, 16(2):463-478.
DOI URL |
[10] |
BOVOLO F, MEMBER S, BRUZZONE L. A framework for automatic and unsupervised detection of multiple changes in multitemporal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6):2196-2212.
DOI URL |
[11] | NEMMOUR H, CHIBANI Y. Multiple support vector machines for land cover change detection: an application for mapping urban extensions[J]. IEEE Journal of Photog-rammetry & Remote Sensing, 2007, 61(2):125-133. |
[12] |
WANG Q, YUAN Z H, DU Q, et al. GETNET: a general end-to-end 2-D CNN framework for hyperspectral image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):3-13.
DOI URL |
[13] |
AN J L, ZHANG X R, JIAO L C. Dimensionality reduction based on group-based tensor model for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10):1497-1501.
DOI URL |
[14] |
LI X T, NG M K, CONG G, et al. MR-NTD: manifold regularization nonnegative tucker decomposition for tensor data dimension reduction and representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8):1787-1800.
DOI URL |
[15] |
SUN L, WU F Y, ZHAN T M, et al. Weighted nonlocal low-rank tensor decomposition method for sparse unmixing of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1174-1188.
DOI URL |
[16] |
XIONG F C, QIAN Y T, ZHOU J, et al. Hyperspectral unmixing via total variation regularized nonnegative tensor factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2341-2357.
DOI URL |
[17] |
YANG L X, WANG M, YANG S Y, et al. Hybrid proba-bilistic sparse coding with spatial neighbor tensor for hyper-spectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5):2491-2502.
DOI URL |
[18] |
SUN W W, YANG G, PENG J T, et al. Lateral-slice sparse tensor robust principal component analysis for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1):107-111.
DOI URL |
[19] |
LIU J J, WU Z B, XIAO L, et al. Generalized tensor regression for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):1244-1258.
DOI URL |
[20] |
QIN Y, BRUZZONE L, LI B. Tensor alignment based domain adaptation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9290-9307.
DOI URL |
[21] |
XU Y, WU Z B, CHANUSSOT J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(6):3034-3047.
DOI URL |
[22] |
KANATSOULIS C I, FU X, SIDIROPOULOS N D, et al. Hyperspectral super-resolution: a coupled tensor factorization approach[J]. IEEE Transactions on Signal Processing, 2018, 66(24):6503-6517.
DOI URL |
[23] |
LI J, LIU X, YUAN Q, et al. Antimoise hyperspectral image fusion by mining tensor low-multilinear-rank and variational properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7832-7848.
DOI URL |
[24] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.
DOI URL |
[25] |
刘建军, 吴泽彬, 韦志辉, 等. 基于约束非负矩阵分解的高光谱图像解混快速算法[J]. 电子学报, 2013, 41(3):432-437.
DOI |
LIU J J, WU Z B, WEI Z H, et al. Fast algorithm for hyperspectral image unmixing based on constrained non-negative matrix decomposition[J]. Acta Electronica Sinica, 2013, 41(3):432-437. | |
[26] |
ZHANG L P, ZHANG L F, DU B. Deep learning for remote sensing data: a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40.
DOI URL |
[27] |
ZHENG Y H, WU F Y, SHIM H J, et al. Sparse unmixing for hyperspectral image with nonlocal low-rank prior[J]. Remote Sensing, 2019, 11(24):2897.
DOI URL |
[1] | XU Chao, ZHAN Tianming. Hyperspectral Anomaly Detection Method Based on Low Rank Total Variation Regu-larization [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2140-2149. |
[2] | HUANG Wei, XU Meng'en, XU Guoming, HUANG Qinchao. Bayesian Sparse Representation for Hyperspectral Image Super Resolution [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1987-1995. |
[3] | ZHANG Juping, GAO Guanglai, SU Xiangdong. Fusion Spectral Filter in Deep Feature Learning Net on Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11): 1806-1814. |
[4] | WU Hao1, LI Shijin1+, LIN Lin2, WAN Dingsheng1. Multiple-strategy Combination Based Approach to Band Selection for Hyper-spectral Image Classification* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(5): 464-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/