Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 458-467.DOI: 10.3778/j.issn.1673-9418.2111036
• Graphics and Image • Previous Articles Next Articles
NA Zhixiong1,+(), FAN Tao2, SUN Tao1, XIE Xiangying3,1, LAI Guangzhi1
Received:
2021-11-05
Revised:
2022-01-12
Online:
2022-02-01
Published:
2022-01-17
About author:
NA Zhixiong, born in 1974, M.S., engineer. His research interests include renewable energy, new power system, etc.Supported by:
那峙雄1,+(), 樊涛2, 孙涛1, 谢祥颖3,1, 来广志1
通讯作者:
+ E-mail: hellonazx@163.com作者简介:
那峙雄(1974—),男,北京人,硕士,工程师,主要研究方向为可再生能源与新型电力系统研究应用等。基金资助:
CLC Number:
NA Zhixiong, FAN Tao, SUN Tao, XIE Xiangying, LAI Guangzhi. Micro-cracks Detection of Solar Cells Based on Few Shot Samples with Multi-loss[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 458-467.
那峙雄, 樊涛, 孙涛, 谢祥颖, 来广志. 多损失融合的小样本光伏组件隐裂检测算法[J]. 计算机科学与探索, 2022, 16(2): 458-467.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2111036
K-shot | 召回率/% | 精确率/% | F1-score |
---|---|---|---|
5 | 85.07 | 75.09 | 0.797 69 |
10 | 85.13 | 78.44 | 0.816 48 |
15 | 85.00 | 81.25 | 0.830 83 |
Table 1 Detection results under K-shot
K-shot | 召回率/% | 精确率/% | F1-score |
---|---|---|---|
5 | 85.07 | 75.09 | 0.797 69 |
10 | 85.13 | 78.44 | 0.816 48 |
15 | 85.00 | 81.25 | 0.830 83 |
网络结构 | 损失策略 | 召回率/% | 精确率/% | |
---|---|---|---|---|
VGG19 | 交叉熵损失 | 65.87 | 68.46 | 0.671 40 |
+三元组损失 | 71.47 | 69.55 | 0.704 97 | |
+三元组&隐式 | 71.93 | 71.52 | 0.717 24 | |
ResNet50 | 交叉熵损失 | 65.53 | 64.38 | 0.649 50 |
+三元组损失 | 75.07 | 70.20 | 0.725 53 | |
+三元组&隐式 | 78.33 | 75.55 | 0.769 15 | |
ResNet50+ SE Block | 交叉熵损失 | 68.00 | 65.56 | 0.667 58 |
+三元组损失 | 79.13 | 71.49 | 0.751 16 | |
+三元组&隐式 | 83.27 | 72.26 | 0.773 75 | |
ResNet50+ Non-local Block | 交叉熵损失 | 66.60 | 65.76 | 0.661 77 |
+三元组损失 | 80.07 | 72.29 | 0.759 81 | |
+三元组&隐式 | 84.47 | 73.62 | 0.786 73 | |
ResNet50+ Transformer Block | 交叉熵损失 | 69.67 | 63.22 | 0.662 88 |
+三元组损失 | 76.47 | 74.25 | 0.753 44 | |
+三元组&隐式 | 85.07 | 75.09 | 0.797 69 |
Table 2 Results of ablation experiment under 5-shot
网络结构 | 损失策略 | 召回率/% | 精确率/% | |
---|---|---|---|---|
VGG19 | 交叉熵损失 | 65.87 | 68.46 | 0.671 40 |
+三元组损失 | 71.47 | 69.55 | 0.704 97 | |
+三元组&隐式 | 71.93 | 71.52 | 0.717 24 | |
ResNet50 | 交叉熵损失 | 65.53 | 64.38 | 0.649 50 |
+三元组损失 | 75.07 | 70.20 | 0.725 53 | |
+三元组&隐式 | 78.33 | 75.55 | 0.769 15 | |
ResNet50+ SE Block | 交叉熵损失 | 68.00 | 65.56 | 0.667 58 |
+三元组损失 | 79.13 | 71.49 | 0.751 16 | |
+三元组&隐式 | 83.27 | 72.26 | 0.773 75 | |
ResNet50+ Non-local Block | 交叉熵损失 | 66.60 | 65.76 | 0.661 77 |
+三元组损失 | 80.07 | 72.29 | 0.759 81 | |
+三元组&隐式 | 84.47 | 73.62 | 0.786 73 | |
ResNet50+ Transformer Block | 交叉熵损失 | 69.67 | 63.22 | 0.662 88 |
+三元组损失 | 76.47 | 74.25 | 0.753 44 | |
+三元组&隐式 | 85.07 | 75.09 | 0.797 69 |
网络结构 | 参数量/106 | 计算量/ GFLOPs | 检测速度/(张/s) |
---|---|---|---|
VGG19 | 20.0 | 19.5 | 93 |
ResNet50 | 23.5 | 4.1 | 268 |
ResNet50+SE | 25.1 | 4.1 | 266 |
ResNet50+Non-local | 48.7 | 5.3 | 226 |
ResNet50+Transformer | 28.3 | 4.9 | 233 |
Table 3 Comparison results of model attributes
网络结构 | 参数量/106 | 计算量/ GFLOPs | 检测速度/(张/s) |
---|---|---|---|
VGG19 | 20.0 | 19.5 | 93 |
ResNet50 | 23.5 | 4.1 | 268 |
ResNet50+SE | 25.1 | 4.1 | 266 |
ResNet50+Non-local | 48.7 | 5.3 | 226 |
ResNet50+Transformer | 28.3 | 4.9 | 233 |
对比方法 | 召回率/% | 精确率/% | F1-score |
---|---|---|---|
ProtoNet[ | 68.73 | 70.02 | 0.693 69 |
RelationNet[ | 71.26 | 53.62 | 0.611 94 |
MAML[ | 67.07 | 69.01 | 0.680 26 |
OptNet[ | 64.86 | 60.24 | 0.624 65 |
多损失融合 | 85.07 | 75.09 | 0.797 69 |
Table 4 Comparison results under 5-shot
对比方法 | 召回率/% | 精确率/% | F1-score |
---|---|---|---|
ProtoNet[ | 68.73 | 70.02 | 0.693 69 |
RelationNet[ | 71.26 | 53.62 | 0.611 94 |
MAML[ | 67.07 | 69.01 | 0.680 26 |
OptNet[ | 64.86 | 60.24 | 0.624 65 |
多损失融合 | 85.07 | 75.09 | 0.797 69 |
[1] |
TAFTI H D, MASWOOD A I, KONSTANTINOU G, et al. A general constant power generation algorithm for photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2018, 33(5):4088-4101.
DOI URL |
[2] |
FUYUKI T, KITIYANAN A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence[J]. Applied Physics A, 2009, 96(1):189-196.
DOI URL |
[3] | RODRÍGUEZ CASTAÑEDA C A, CHATTOPADHYAY S, OH J, et al. Field inspection of PV modules: quantitative determination of performance loss due to cell cracks using EL images[C]//Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference, Washington, Jun 25-30, 2017. Piscat-away: IEEE, 2017: 1858-1862. |
[4] | LI Y, ZHANG Y H. Application research of computer vision technology in automation[C]//Proceedings of the 2020 Interna-tional Conference on Computer Information and Big Data Applications, Guiyang, Apr 17-19, 2020. Piscataway: IEEE, 2020: 374-377. |
[5] | 侯永宏, 吕晓冬, 陈艳芳, 等. 深度神经网络在森林步道视觉识别中的应用[J]. 计算机科学与探索, 2019, 13(2):263-274. |
HOU Y H, LV X D, CHEN Y F, et al. Application of deep neural networks in visual recognition of forest trails[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2):263-274. | |
[6] | XIE X, LIU H, NA Z, et al. DPiT: detecting defects of photovoltaic solar cells with image transformers[J]. IEEE Access, 2021, 9:154292-154303. |
[7] |
DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185:455-468.
DOI URL |
[8] | CHEN S R, SHAN S, XIE L P, et al. A deep two-stage scheme for polycrystalline micro-crack detection[C]//Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems, Athens, Jul 2020. New York: ACM, 2020: 1-5. |
[9] | ZHANG N, SHAN S, WEI H, et al. Micro-cracks detection of polycrystalline solar cells with transfer learning[J]. Journal of Physics Conference Series, 2020, 1651:012118. |
[10] | JI R, SHAN S, ZHANG K, et al. The self-labeling of unsup-ervised polycrystalline solar cell micro-crack images[C]// Proceedings of the 5th International Conference on Mech-anical, Control and Computer Engineering, 2020: 2237-2240. |
[11] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[12] | 程天艺, 王亚刚, 龙旭, 等. 多层次降维的头颈癌图像特征选择方法[J]. 计算机科学与探索, 2020, 14(4):669-679. |
CHENG T Y, WANG Y G, LONG X, et al. Multi-level dimensionality reduction of head and neck cancer image feature selection method[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4):669-679. | |
[13] | WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Com- puting Surveys, 2020, 53(3):1-34. |
[14] | SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 4077-4087. |
[15] | SUNG F, YANG Y, LI Z, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 1199-1208. |
[16] | YE H J, HU H, ZHAN D C, et al. Few-shot learning via embedding adaptation with set-to-set functions[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8805-8814. |
[17] |
HOSPEDALES T M, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: a survey[J]. IEEE Transa-ctions on Pattern Analysis and Machine Intelligence, 2021. DOI: 10.1109/TPAMI.2021.3079209.
DOI |
[18] | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1126-1135. |
[19] | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017. |
[20] | REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[C]//Proceedings of the 6th International Conference on Learning Representa-tions, Vancouver, Apr 30-May 3, 2018. |
[21] | BENGIO Y, LECUN Y. Scaling learning algorithms towards AI[J]. Large-scale Kernel Machines, 2007, 34(5):1-41. |
[22] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[23] | MÜLLER R, KORNBLITH S, HINTON G. When does label smoothing help?[C]//Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 4694-4703. |
[24] | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 815-823. |
[25] | SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4135-4144. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | ZHANG Haocong, LI Tao, XING Lidong, PAN Fengrui. Parallel Implementation of OpenVX Feature Extraction Functions in Programmable Processing Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1583-1593. |
[6] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[7] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[8] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[9] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[10] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[13] | WANG Zhongmin, ZHAO Yupeng, ZHENG Ronglin, HE Yan, ZHANG Jiawen, LIU Yang. Survey of Research on EEG Signal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 760-774. |
[14] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[15] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/