Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 760-774.DOI: 10.3778/j.issn.1673-9418.2107006
• Surveys and Frontiers • Previous Articles Next Articles
WANG Zhongmin1,2,3, ZHAO Yupeng1,+(), ZHENG Ronglin1, HE Yan1,2,3, ZHANG Jiawen1, LIU Yang1
Received:
2021-07-05
Revised:
2021-11-11
Online:
2022-04-01
Published:
2021-11-19
About author:
WANG Zhongmin, born in 1967, Ph.D., professor, M.S. supervisor, senior member of CCF. His research interests include embedded intelligent perception, brain-computer interface, machine learning, affective computing, etc.Supported by:
王忠民1,2,3, 赵玉鹏1,+(), 郑镕林1, 贺炎1,2,3, 张嘉雯1, 刘洋1
通讯作者:
+ E-mail: 1183708403@qq.com作者简介:
王忠民(1967—),男,陕西蒲城人,博士,教授,硕士生导师,CCF高级会员,主要研究方向为嵌入式智能感知、脑机接口、机器学习、情感计算等。基金资助:
CLC Number:
WANG Zhongmin, ZHAO Yupeng, ZHENG Ronglin, HE Yan, ZHANG Jiawen, LIU Yang. Survey of Research on EEG Signal Emotion Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 760-774.
王忠民, 赵玉鹏, 郑镕林, 贺炎, 张嘉雯, 刘洋. 脑电信号情绪识别研究综述[J]. 计算机科学与探索, 2022, 16(4): 760-774.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2107006
频带 | 描述 |
---|---|
| 极度疲劳和昏睡状态时,可在颞叶、顶叶记录到这种波段 |
| 在精神病患者中以及当成年人感到挫败时这种波最为明显 |
| 清醒、安静并闭眼时最为明显,它是正常人脑电波的基本节律 |
| 精神紧张、焦虑、亢奋、注意力高度集中时会出现此波 |
| 当出现多模态的感觉刺激会出现此波 |
Table 1 Different frequency bands of EEG signal and their description
频带 | 描述 |
---|---|
| 极度疲劳和昏睡状态时,可在颞叶、顶叶记录到这种波段 |
| 在精神病患者中以及当成年人感到挫败时这种波最为明显 |
| 清醒、安静并闭眼时最为明显,它是正常人脑电波的基本节律 |
| 精神紧张、焦虑、亢奋、注意力高度集中时会出现此波 |
| 当出现多模态的感觉刺激会出现此波 |
作者 | 脑网络构建方法 | 度量指标 |
---|---|---|
Wang等人[ | 格兰杰因果关系 | — |
Ma等人[ | 相干性 | 聚类系数、特征路径长度 |
Chen等人[ | 格兰杰因果关系 | 连接密度、因果流 |
杨剑等人[ | 皮尔逊相关系数 | — |
Dasdemir等人[ | 相位锁值 | — |
Zhang等人[ | 相位锁值 | — |
Moon等人[ | 相位锁值、皮尔逊相关系数、相位滞后指数 | — |
Li等人[ | 相位锁值 | 聚类系数、最短路径长度、全局效率、局部效率 |
Wu等人[ | 皮尔逊相关系数、谱相干 | 节点强度、聚类系数、特征向量中心度 |
Li等人[ | 相位锁值 | — |
Liu等人[ | 相位滞后指数 | 连接强度 |
Al-Shargie等人[ | 相位锁值 | — |
Deng等人[ | 相位锁值 | 网络均值、聚类系数、全局效率、局部效率、平均最短路径长度、介数中心度、节点度 |
Wang等人[ | 相位锁值 | 特征路径长度、全局效率、聚类系数、传递性、局部效率 |
王斌等人[ | 格兰杰因果关系 | 介数 |
Sun等人[ | 相位锁值 | 聚类系数、平均最短路径长度、全局效率、局部效率、节点度、介数中心度 |
刘柯等人[ | 互信息 | 聚类系数、平均最短路径长度 |
Table 2 Research on brain network-based emotion recognition
作者 | 脑网络构建方法 | 度量指标 |
---|---|---|
Wang等人[ | 格兰杰因果关系 | — |
Ma等人[ | 相干性 | 聚类系数、特征路径长度 |
Chen等人[ | 格兰杰因果关系 | 连接密度、因果流 |
杨剑等人[ | 皮尔逊相关系数 | — |
Dasdemir等人[ | 相位锁值 | — |
Zhang等人[ | 相位锁值 | — |
Moon等人[ | 相位锁值、皮尔逊相关系数、相位滞后指数 | — |
Li等人[ | 相位锁值 | 聚类系数、最短路径长度、全局效率、局部效率 |
Wu等人[ | 皮尔逊相关系数、谱相干 | 节点强度、聚类系数、特征向量中心度 |
Li等人[ | 相位锁值 | — |
Liu等人[ | 相位滞后指数 | 连接强度 |
Al-Shargie等人[ | 相位锁值 | — |
Deng等人[ | 相位锁值 | 网络均值、聚类系数、全局效率、局部效率、平均最短路径长度、介数中心度、节点度 |
Wang等人[ | 相位锁值 | 特征路径长度、全局效率、聚类系数、传递性、局部效率 |
王斌等人[ | 格兰杰因果关系 | 介数 |
Sun等人[ | 相位锁值 | 聚类系数、平均最短路径长度、全局效率、局部效率、节点度、介数中心度 |
刘柯等人[ | 互信息 | 聚类系数、平均最短路径长度 |
脑网络类别 | 构建方法 |
---|---|
功能性脑网络 | 相关分析、相干分析、互信息、似然同步、相位同步、相位滞后指数 |
因效性脑网络 | 格兰杰因果关系、部分定向相干 |
Table 3 Common brain network construction methods
脑网络类别 | 构建方法 |
---|---|
功能性脑网络 | 相关分析、相干分析、互信息、似然同步、相位同步、相位滞后指数 |
因效性脑网络 | 格兰杰因果关系、部分定向相干 |
[1] |
KESSOUS L, CASTELLANO G, CARIDAKIS G. Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis[J]. Journal on Multimodal User Interfaces, 2010, 3(1):33-48.
DOI URL |
[2] |
GAO Z, LI Y, YANG Y, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380:225-235.
DOI URL |
[3] |
CHEN G, ZHANG X, SUN Y, et al. Emotion feature analysis and recognition based on reconstructed EEG sources[J]. IEEE Access, 2020, 8:11907-11916.
DOI URL |
[4] |
WANG Z, ZHOU X, WANG W, et al. Emotion recognition using multimodal deep learning in multiple psychophysiological signals and video[J]. International Journal of Machine Learning and Cybernetics, 2020, 5:1-12.
DOI URL |
[5] | 赵国朕, 宋金晶, 葛燕, 等. 基于生理大数据的情绪识别研究进展[J]. 计算机研究与发展, 2016, 53(1):80-92. |
ZHAO G Z, SONG J J, GE Y, et al. Advances in emotion recognition based on physiological big data[J]. Journal of Computer Research and Development, 2016, 53(1):80-92. | |
[6] | BLACK M H, CHEN N, IYER K K, et al. Mechanisms of facial emotion recognition in autism spectrum disorders: insights from eye tracking and electroencephalography[J]. Neuroence and Biobehavioral Reviews, 2017, 80:488-515. |
[7] | 吕宝粮, 张亚倩, 郑伟龙. 情感脑机接口研究综述[J]. 智能科学与技术学报, 2021, 3(1):36-48. |
LU B L, ZHANG Y Q, ZHENG W L. A survey of affective brain-computer interface[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1):36-48. | |
[8] |
PICARD R W, VYZAS E, HEALEY J. Toward machine emotional intelligence: analysis of affective physiological state[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10):1175-1191.
DOI URL |
[9] |
KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2011, 3:18-31.
DOI URL |
[10] | DUAN R N, ZHU J Y, LU B L. Differential entropy feature for EEG-based emotion classification[C]// Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering, Santiago, Nov 6-8, 2013. Piscataway: IEEE, 2013: 81-84. |
[11] |
ZHENG W L, LU B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3):162-175.
DOI URL |
[12] | 张迪, 万柏坤, 明东. 基于生理信号的情绪识别研究进展[J]. 生物医学工程学杂志, 2015, 32(1):229-234. |
ZHANG D, WANG B K, MING D. Research progress on emotion recognition based on physiological signals[J]. Journal of Biomedical Engineering, 2015, 32(1):229-234. | |
[13] | BROEK E L. Ubiquitous emotion-aware computing[J]. Personal and Ubiquitous Computing Archive, 2013, 17(1):53-67. |
[14] | POSNER J, RUSSELL J A, PETERSON B S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology[J]. Development and Psychopathology, 2005, 17(3):715-734. |
[15] | CHEN X, WANG Y, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences, 2015, 112(44):E6058-E6067. |
[16] | 李颖洁, 邱意弘, 朱贻盛. 脑电信号分析方法及其应用[M]. 北京: 科学出版社, 2009. |
LI Y J, QIU Y H, ZHU Y S. EEG signal analysis methods and their applications[M]. Beijing: Science Press, 2009. | |
[17] | JASPER H. The ten-twenty electrode system of the International Federation[J]. Neurophysiology, 1957, 10(2):371-375. |
[18] | 李刚. 基于脑功能网络的脑力疲劳检测技术及其形成机理研究[D]. 济南:山东大学, 2017. |
LI G. Study on the mental fatigue detecting technology and its formation mechanism based on brain functional network[D]. Jinan: Shandong University, 2017. | |
[19] | BARTELS G, SHI L C, LU B L. Automatic artifact removal from EEG—a mixed approach based on double blind source separation and support vector machine[C]// Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Aug 31-Sep 4, 2010. Piscataway: IEEE, 2010: 5383-5386. |
[20] | ZHANG C, TONG L, ZENG Y, et al. Automatic artifact removal from electroencephalogram data based on a priori artifact information[J]. Biomed Research International, 2015: 720450. |
[21] |
YANG B H, DUAN K W, FAN C C, et al. Automatic ocular artifacts removal in EEG using deep learning[J]. Biomedical Signal Processing and Control, 2018, 43:148-158.
DOI URL |
[22] | KASHIHARA K. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions[J]. Frontiers in Neuroscience, 2014, 8:244. |
[23] | TRIPATHI S, ACHARYA S, SHARMA R D, et al. Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4746-4752. |
[24] |
ZHANG Q, LEE M. A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals[J]. Neurocomputing, 2010, 73:3264-3272.
DOI URL |
[25] | ZOURIDAKIS G, PATIDAR U, PADHYE N S, et al. Spectral power of brain activity associated with emotion—a pilot MEG study[C]// Proceedings of the 17th International Conference on Biomagnetism Advances in Biomagnetism, Dubrovnik, Mar 28-Apr 1, 2010. Berlin, Heidelberg: Springer, 2010: 354-357. |
[26] | GADADE B, CAUVERY N K. Emotion recognition using EEG signals[J]. Software Engineering, 2018, 10(5):94-98. |
[27] | AL-NAFJAN A, HOSNY M, AL-OHALI Y, et al. Recognition of affective states via electroencephalogram analysis and classification[C]// Proceedings of the 2018 International Conference on Intelligent Human Systems Integration, Dubai, Jan 7-9, 2018. Cham: Springer, 2018: 242-248. |
[28] |
LI D H, WANG Z, WANG C H, et al. The fusion of electroencephalography and facial expression for continuous emotion recognition[J]. IEEE Access, 2019, 7:155724-155736.
DOI URL |
[29] | MURUGAPPAN M, RIZON M, NAGARAJAN R, et al. Time-frequency analysis of EEG signals for human emotion detection[C]// Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering, Kuala Lumpur, Jun 25-28, 2008. Berlin, Heidelberg: Springer, 2008: 262-265. |
[30] | 陈萌, 李幼军, 刘岩. 脑电信号与个人情绪状态关联性分析研究[J]. 计算机科学与探索, 2017, 11(5):794-801. |
CHENG M, LI Y J, LIU Y. Analysis of correlation between EEG signal and personal emotional state[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(5):794-801. | |
[31] | HOSSEINI S A, NAGHIBI-SISTANI M B. Emotion recognition method using entropy analysis of EEG signals[J]. International Journal of Image, Graphics and Signal Processing, 2011, 3(5):30. |
[32] | LIU Y S, SOURINA O, NGUYEN M K. Real-time EEG-based emotion recognition and its applications[M]// LNCS 6670: GAVRILOVA M L, TAN C J K, SOURIN A. Transactions on Computational Science XII-Special Issue on Cyberworlds. Berlin, Heidelberg: Springer, 2011. |
[33] | 柳长源, 李文强, 毕晓君. 基于脑电信号的情绪特征提取与分类[J]. 传感技术学报, 2019, 32(1):82-88. |
LIU C Y, LI W Q, BI X J. Emotional feature extraction and classification based on EEG signals[J]. Chinese Journal of Sensors and Actuators, 2019, 32(1):82-88. | |
[34] | WANG N, WANG Y, LI Y J, et al. Gamma oscillation in brain connectivity in emotion recognition by Granger causality[C]// Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics, Shanghai, Oct 15-17, 2011. Piscataway: IEEE, 2011: 762-766. |
[35] | MA M F, LI Y J, XU Z Z, et al. Small-world network organization of functional connectivity of EEG gamma oscillation during emotion-related processing[C]// Proceedings of the 2012 5th International Conference on Biomedical Engineering and Informatics, Chongqing, Oct 16-18, 2012. Piscataway: IEEE, 2012: 597-600. |
[36] | CHEN D W, FANG W, ZHEN W, et al. Eeg-based emotion recognition with brain network using independent components analysis and Granger causality[C]// Proceedings of the 2013 International Conference on Computer Medical Applications, Sousse, Jan 20-22, 2013. Piscataway: IEEE, 2013: 1-6. |
[37] | 杨剑, 陈书燊, 皇甫浩然, 等. 静息态脑电信号动态功能连接分析[J]. 物理学报, 2015, 64(5):382-391. |
YANG J, CHEN S S, HUANGFU H R, et al. Dynamic functional connectivity of electro encephalogram in the resting state[J]. Acta Physica Sinica, 2015, 64(5):382-391. | |
[38] |
DASDEMIR Y, YILSIRIM E, YILDIRLM S. Analysis of functional brain connections for positive-negative emotions using phase locking value[J]. Cognitive Neurodynamics, 2017, 11(6):487-500.
DOI URL |
[39] | ZHANG J H, ZHAO S K, YANG G D, et al. Emotional-state brain network analysis revealed by minimum spanning tree using EEG signals[C]// Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine, Madrid, Dec 3-6, 2018. Washington: IEEE Computer Society, 2018: 1045-1048. |
[40] | MOON S E, JANG S, LEE J S. Convolutional neural network approach for EEG-based emotion recognition using brain connectivity and its spatial information[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 2556-2560. |
[41] |
LI P Y, LIU H, SI Y J, et al. EEG based emotion recognition by combining functional connectivity network and local activations[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(10):2869-2881.
DOI URL |
[42] | WU X, ZHENG W L, LU B L. Identifying functional brain connectivity patterns for EEG-based emotion recognition[C]// Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering, San Francisco, Mar 20-23, 2019. Piscataway: IEEE, 2019: 235-238. |
[43] | LI C B, LI P Y, JIANG L, et al. Emotion recognition with the feature extracted from brain networks[C]// Proceedings of the 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Tianjin, Jun 14-16, 2019. Piscataway: IEEE, 2019: 1-4. |
[44] |
LIU X C, LI T, TABF C, et al. Emotion recognition and dynamic functional connectivity analysis based on EEG[J]. IEEE Access, 2019, 7:143293-143302.
DOI URL |
[45] | AL-SHARGIE F, TARIQ U, ALEX M, et al. Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: an EEG study[J]. IEEE Access, 2019, 7:143350-143362. |
[46] | DENG H X, QIAN G, ZHANG Y F, et al. Emotional analysis and recognition based on EEG brain network[C]// Proceedings of the 2020 8th International Conference on Advanced Cloud and Big Data, Taiyuan, Dec 5-6, 2020. Piscataway: IEEE, 2020: 56-61. |
[47] |
WANG Z M, ZHOU R, HE Y, et al. Functional integration and separation of brain network based on phase locking value during emotion processing[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020. DOI: 10.1109/TCDS.2020.3001642.
DOI |
[48] | 王斌, 王忠民, 张荣. 基于多通道脑电信号的因果网络情绪识别[J]. 计算机工程, 2022, 48(1):69-74. |
WANG B, WANG Z M, ZHANG R. Emotion recognition using causal network based on multi-channel EEG signal[J]. Computer Engineering, 2022, 48(1):69-74. | |
[49] | SUN X F, HU B, ZHENG X W, et al. Emotion classification based on brain functional connectivity network[C]// Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine, Seoul, Dec 16-19, 2020. Piscataway: IEEE, 2020: 2082-2089. |
[50] | 刘柯, 张孝, 李沛洋, 等. 基于脑功能网络和共空间模式分析的脑电情绪识别[J]. 计算机应用研究, 2021, 38(5):1344-1349. |
LIU K, ZHANG X, LI P Y, et al. EEG emotion recognition based on common spatial pattern of brain functional network[J]. Application Research of Computers, 2021, 38(5):1344-1349. | |
[51] |
STAM C J, NOLTE G, DAFFERTSHOFER A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2010, 28(11):1178-1193.
DOI URL |
[52] | GRABGER C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: Journal of the Econometric Society, 1969: 424-438. |
[53] |
GEWEKE J. Measurement of linear dependence and feedback between multiple time series[J]. Journal of the American Statistical Association, 1982, 77(378):304-313.
DOI URL |
[54] |
FRISTON K J. Functional and effective connectivity in neuroimaging: a synjournal[J]. Human Brain Mapping, 1994, 2(1/2):56-78.
DOI URL |
[55] |
FRISTON K J. Functional and effective connectivity: a review[J]. Brain Connectivity, 2011, 1(1):13-36.
DOI URL |
[56] |
COSTA T, ROGNONI E, GALATI D. EEG phase synchronization during emotional response to positive and negative film stimuli[J]. Neuroscience Letters, 2006, 406(3):159-164.
DOI URL |
[57] | GONUGUNTLA V, MALLIPEDDI R, VELUVOLU K C. Identification of emotion associated brain functional network with phase locking value[C]// Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Aug 16-20, 2016. Piscataway: IEEE, 2016: 4515-4518. |
[58] |
WANG Z M, TONG Y, XIA H. Phase-locking value based graph convolutional neural networks for emotion recognition[J]. IEEE Access, 2019, 7:93711-93722.
DOI URL |
[59] | LEE Y Y, HSIEH S. Classifying different emotional states by means of EEG-based functional connectivity patterns[J]. PLOS One, 2014, 9(4):95415. |
[60] | KHOSROWABADI R, QUEK H C, WAHAB A, et al. EEG-based emotion recognition using self-organizing map for boundary detection[C]// Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010. Piscataway: IEEE, 2010: 4242-4245. |
[61] |
LIN Y P, WANG C H, WU T L, et al. EEG-based emotion recognition in music listening[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7):1798-1806.
DOI URL |
[62] | DEGIRMENCI M, OZDEMIR M A, SADIGHZADEH R, et al. Emotion recognition from EEG signals by using empirical mode decomposition[C]// Proceedings of the 2018 Medical Technologies National Congress, Magusa, Nov 8-10, 2018. Piscataway: IEEE, 2019: 1-4. |
[63] |
QING C M, QIAO R, XU X M, et al. Interpretable emotion recognition using EEG signals[J]. IEEE Access, 2019, 7:94160-94170.
DOI URL |
[64] |
XING X F, LI Z Q, XU T Y, et al. SAE+LSTM: a new framework for emotion recognition from multi-channel EEG[J]. Frontiers in Neurorobotics, 2019, 13:37.
DOI URL |
[65] | CHEN T, JU S H, YUAN X H, et al. Emotion recognition using empirical mode decomposition and approximation entropy[J]. Computers & Electrical Engineering, 2018, 72:383-392. |
[66] | 李劲鹏. 脑电情绪识别中跨被试迁移学习方法研究[D]. 北京: 中国科学院大学, 2019. |
LI J P. Research on cross-subject transfer learning method in EEG emotion recognition[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
[67] | 蔡梓良, 郭苗苗, 杨新生, 等. 基于最大分类器差异域对抗方法的跨被试脑电情绪识别研究[J]. 生物医学工程学杂志, 2021, 38(3):455-462. |
CAI Z L, GUO M M, YANG X S, et al. Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy[J]. Journal of Biomedical Engineering, 2021, 38(3):455-462. |
[1] | ZHANG Haocong, LI Tao, XING Lidong, PAN Fengrui. Parallel Implementation of OpenVX Feature Extraction Functions in Programmable Processing Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1583-1593. |
[2] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[3] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[4] | NA Zhixiong, FAN Tao, SUN Tao, XIE Xiangying, LAI Guangzhi. Micro-cracks Detection of Solar Cells Based on Few Shot Samples with Multi-loss [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 458-467. |
[5] | SUN Yu, WEI Benzheng, LIU Chuan, ZHANG Kuixing, CONG Jinyu. Melting Reduction Auto-Encoder [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1526-1533. |
[6] | ZHAO Xiaoqiang, XU Huiping. Image Semantic Segmentation Method with Hierarchical Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 949-957. |
[7] | SHI Zhicheng, ZHOU Yu. Method of Code Features Automated Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 456-467. |
[8] | LI Xiangxia, JI Xiaohui, LI Bin. Deep Learning Method for Fine-Grained Image Categorization [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1830-1842. |
[9] | YAN Chunman, WANG Cheng. Development and Application of Convolutional Neural Network Model [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 27-46. |
[10] | LI Wei, ZHAO Xiaole, DUAN Yanlong, LIU Lijun, HUANG Qingsong. Classification of Pulmonary Nodules Based on CNN Multi-level Second-order Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1590-1601. |
[11] | REN Jiadong, WANG Qian, WANG Fei, LI Yazhou, LIU Jiaxin. Automatic Classification of Computer Vulnerability Based on S-C Feature Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1173-1182. |
[12] | CHENG Yusheng, LI Zhiwei, PANG Shufang. Multi-Label Feature Extraction Method Relied on Feature-Label Dependence Auto-encoder [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 470-481. |
[13] | SHENG Jiachuan, WANG Jiayuan, LI Yuzhi, WANG Jun. Improved Fast Generation of Superpixel Algorithms with Deep Network [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2132-2139. |
[14] | TIAN Xiaobin, DENG Zhaohong, WANG Shitong. Multi-view Epilepsy Detection Algorithm Combining Deep and Shallow Features [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1712-1726. |
[15] | WANG Ru, HE Xingshi, YANG Xinshe. Research on Face Detection Algorithm for Dual-Shot Neural Network Matching [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1727-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/