Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (7): 1826-1837.DOI: 10.3778/j.issn.1673-9418.2306003
• Graphics·Image • Previous Articles Next Articles
WANG Guokai, ZHANG Xiang, WANG Shunfang
Online:
2024-07-01
Published:
2024-06-28
王国凯,张翔,王顺芳
WANG Guokai, ZHANG Xiang, WANG Shunfang. Multi-scale and Boundary Fusion Network for Skin Lesion Regions Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1826-1837.
王国凯, 张翔, 王顺芳. 多尺度和边界融合的皮肤病变区域分割网络[J]. 计算机科学与探索, 2024, 18(7): 1826-1837.
[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: an overview[J]. International Journal of Cancer, 2021, 149(4): 778-789. [2] ROGERS H W, WEINSTOCK M A, FELDMAN S R, et al. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012[J]. JAMA Dermatology, 2015, 151(10): 1081-1086. [3] KHARAZMI P, ALJASSER M I, LUI H, et al. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(6): 1675-1684. [4] JAIN A, WAY D, GUPTA V, et al. Development and assessment of an artificial intelligence-based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices[J]. JAMA Network Open, 2021, 4(4): e217249. [5] YUEKSEL M E, BORLU M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 976-982. [6] MA Z, TAVARES J M R S. A novel approach to segment skin lesions in dermoscopic images based on a deformable model[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 20(2): 615-623. [7] MIRBEIK A, ASHINOFF R, JONG T, et al. Real-time high-resolution millimeter-wave imaging for in-vivo skin cancer diagnosis[J]. Scientific Reports, 2022, 12(1): 4971. [8] LI H, CHEN D, NAILON W H, et al. Dual convolutional neural networks for breast mass segmentation and diagnosis in mammography[J]. IEEE Transactions on Medical Imaging, 2021, 41(1): 3-13. [9] DI S, ZHAO Y Q, LIAO M, et al. TD-Net: a hybrid end-to-end network for automatic liver tumor segmentation from CT images[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(3): 1163-1172. [10] 梁礼明, 陈鑫, 余洁, 等. 多尺度注意力细化视网膜分割算法[J]. 计算机工程与应用,2023, 59(6): 212-220. LIANG L M, CHEN X, YU J, et al. Multi-scale attention refinement retinal segmentation algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 212-220. [11] DAI D, DONG C, XU S, et al. Ms RED: a novel multi-scale residual encoding and decoding network for skin lesion segmentation[J]. Medical Image Analysis, 2022, 75: 102293. [12] HUANG X, DENG Z, LI D, et al. MISSFormer: an effective transformer for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(5): 1484-1494. [13] QU Z, ZHUO L, CAO J, et al. TP-Net: two-path network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(4): 1979-1990. [14] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [15] GU R, WANG G, SONG T, et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711. [16] HU K, LU J, LEE D, et al. AS-Net: attention synergy network for skin lesion segmentation[J]. Expert Systems with Applications, 2022, 201: 117112. [17] WU H, CHEN S, CHEN G, et al. FAT-Net: feature adaptive transformers for automated skin lesion segmentation[J]. Medical Image Analysis, 2022, 76: 102327. [18] BASAK H, KUNDU R, SARKAR R. MFSNet: a multi focus segmentation network for skin lesion segmentation[J]. Pattern Recognition, 2022, 128: 108673. [19] CAO W, YUAN G, LIU Q, et al. ICL-Net: global and local inter-pixel correlations learning network for skin lesion segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 145-156. [20] FENG K, REN L, WANG G, et al. SLT-Net: a codec network for skin lesion segmentation[J]. Computers in Biology and Medicine, 2022, 148: 105942. [21] SUN Y, DAI D, ZHANG Q, et al. MSCA-Net: multi-scale contextual attention network for skin lesion segmentation[J]. Pattern Recognition, 2023, 139: 109524. [22] ZHOU T, ZHOU Y, HE K, et al. Cross-level feature aggregation network for polyp segmentation[J]. Pattern Recognition, 2023, 140: 109555. [23] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018. [24] CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. [2023-03-20]. https://arxiv.org/abs/1902.03368. [25] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5(1): 1-9. [26] MENDON?A T, FERREIRA P M, MARQUES J S, et al. PH 2-A dermoscopic image database for research and bench-marking[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2013: 5437-5440. [27] ZHOU Z, SIDDIQUEE R M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, Held in Conjunction with 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Sep 20, 2018. Cham: Springer, 2018: 3-11. [28] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].[2023-03-20]. https://arxiv.org/abs/1804.03999. [29] GU Z, CHENG J, FU H, et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292. |
[1] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[2] | WEN Wen, DENG Fengying, HAO Zhifeng, CAI Ruichu, LIANG Fangyu. Recommendation Method for Time-Sequence Point of Interest via Spatio-Temporal Vicinity Perception [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878. |
[3] | WANG Yonggui, LIU Danni. Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. |
[4] | XIA Qingfeng, XU Ke'er, LI Mingyang, HU Kai, SONG Lipeng, SONG Zhiqiang, SUN Ning. Review of Attention Mechanisms in Reinforcement Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1457-1475. |
[5] | YANG Li, ZHONG Junhong, ZHANG Yun, SONG Xinyu. Temporal Multimodal Sentiment Analysis with Composite Cross Modal Interaction Network [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1318-1327. |
[6] | LYU Fu, FU Yuheng, HE Lina, YANG Dongpeng. UAV Remote Sensing Object Detection Based on 3D Multi-layer Feature Collaboration [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1301-1317. |
[7] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[8] | WANG Xiang, MAO Li, CHEN Qidong, SUN Jun. Sentiment Analysis Combining Dynamic Gradient and Multi-view Co-attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1328-1338. |
[9] | CHEN Linying, LIU Jianhua, ZHENG Zhixiong, LIN Jie, XU Ge, SUN Shuihua. Multi-feature Interaction for Aspect Sentiment Triplet Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1057-1067. |
[10] | WANG Longye, XIAO Yue, ZENG Xiaoli, ZHANG Kaixin, MA Ao. Skin Disease Segmentation Method Combining Dense Encoder and Dual-Path Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 978-989. |
[11] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[12] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[13] | WANG Yan, NAN Peiqi. MFFNet: Image Semantic Segmentation Network of Multi-level Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717. |
[14] | QI Xuanhao, ZHI Min. Review of Attention Mechanisms in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362. |
[15] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/