Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (7): 1838-1851.DOI: 10.3778/j.issn.1673-9418.2308091
• Graphics·Image • Previous Articles Next Articles
YUAN Heng, GENG Yikun
Online:
2024-07-01
Published:
2024-06-28
袁姮,耿仪坤
YUAN Heng, GENG Yikun. Feature Refinement and Multi-scale Attention for Transformer Image Denoising Network[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1838-1851.
袁姮, 耿仪坤. 特征细化和多尺度注意力的Transformer图像去噪网络[J]. 计算机科学与探索, 2024, 18(7): 1838-1851.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2308091
[1] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [2] 钱冲, 常冬霞. 图拉普拉斯正则化稀疏变换学习图像去噪算法[J]. 计算机工程与应用, 2022, 58(5): 232-239. QIAN C, CHANG D?X. Image denoising algorithm based on graph Laplacian regularized sparse transform learning[J]. Computer Engineering and Applications, 2022, 58(5): 232-239. [3] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. [4] ZHANG K, ZUO W M, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622. [5] GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 1712-1722. [6] 丁岳皓, 吴昊, 孔凤玲, 等. 面向真实图像噪声的两阶段盲去噪[J]. 中国图象图形学报, 2023, 28(7): 2026-2036. DING Y H, WU H, KONG F L, et al. A dual of real image noise-related blind denoising technique[J]. Journal of Image and Graphics, 2023, 28(7): 2026-2036. [7] WU W C, LIU S J, ZHOU Y, et al. Dual residual attention network for image denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2305.04269. [8] WU W C, LV G N, DUAN Y Y, et al. DCANet: dual convolutional neural network with attention for image blind denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2304.01498. [9] 曲海成, 申磊. 面向目标检测的SAR图像去噪和语义增强[J]. 光子学报, 2022, 51(4): 329-343. QU H C, SHEN L. SAR image denoising and semantic enhancement for object detection[J]. Acta Photonica Sinica, 2022, 51(4): 329-343. [10] HUANG J, LIU X, PAN Y, et al. CasaPuNet: channel affine self-attention based progressively updated network for real image denoising[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 9145-9156. [11] MOU C, ZHANG J, FAN X, et al. COLA-Net: collaborative attention network for image restoration[J]. IEEE Transactions on Multimedia, 2022, 24: 1366-1377. [12] JIANG B, LU Y, WANG J, et al. Deep image denoising with adaptive priors[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5124-5136. [13] 耿玉标, 岳志远, 闫麒名, 等. 产品表面缺陷检测的多通路阈值收缩融合网络[J]. 计算机工程与应用, 2023, 59(10): 162-170. GENG Y B, YUE Z Y, YAN Q M, et al. Multi-stream thres-hold shrinkage and fusion network for product surface defect detection[J]. Computer Engineering and Applications, 2023, 59(10): 162-170. [14] JIANG J D, ZHENG L N, LUO F, et al. RedNet: residual encoder-decoder network for indoor RGB-D semantic segmentation[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1806. 01054. [15] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 14821-14831. [16] JIANG Y Q, ZHANG C, LIU J. CS-PCN: context-space progressive collaborative network for image denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2305.10146. [17] POTLAPALLI V, ZAMIR S W, KHAN S, et al. PromptIR: prompting for all-in-one blind image restoration[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2306.13090. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [19] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 10012-10022. [20] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 1833-1844. [21] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 17683-17693. [22] YAO C, JIN S, LIU M Q, et al. Dense residual transformer for image denoising[J]. Electronics, 2022, 11(3): 418. [23] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5- 9, 2015. Cham: Springer, 2015: 234-241. [24] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2010.11929. [25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. [26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. [27] CHARBONNIER P, BLANC-FERAUD L, AUBERT G, et al. Two deterministic half-quadratic regularization algorithms for computed imaging[C]//Proceedings of the 1st International Conference on Image Processing, Austin, Nov 13-16, 1994. Piscataway: IEEE, 1994: 168-172. [28] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. [29] ASSESSMENT I Q. From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 770-778. [30] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 1692-1700. [31] PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1586-1595. [32] LEBRUN M, COLOM M, MOREL J M. The noise clinic: a blind image denoising algorithm[J]. Image Processing on Line, 2015, 5: 1-54. [33] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 492-511. [34] ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3155-3164. [35] YUE Z S, YONG H W, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 1688-1699. [36] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: real image restoration via improved data synthesis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2696-2705. [37] CHENG S, WANG Y Z, HUANG H B, et al. NBNet: noise basis learning for image denoising with subspace projection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 4896-4906. |
[1] | LUO Shijie, JIN Rize, HAN Shuzhen. Research on University Basic Knowledge Question-Answering Using Low-Rank Encoding to Optimize Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2156-2168. |
[2] | CHEN Zhongyong, HUANG Yongsheng, ZHANG Min, JIANG Ming. Study on Entity Extraction Method for Pharmaceutical Instructions Based on Pretrained Models [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1911-1922. |
[3] | CHEN Dongyang, MAO Li. Research on Stock Price Prediction Integrating Incremental Learning and Transformer Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1889-1899. |
[4] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[5] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[6] | CHEN Qian, HONG Zheng, SI Jianpeng. Application Layer Protocol Recognition Incorporating SENet and Transformer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 805-817. |
[7] | GONG Ying, XU Wentao, ZHAO Ce, WANG Binjun. Review of Application of Generative Adversarial Networks in Image Restoration [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 553-573. |
[8] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[9] | GUO Kaihong, ZHOU Yongzhi, WU Zheng, ZHANG Lei. Detection and Removal of Noise in Images Based on Amount of Knowledge Associated with Intuitionistic Fuzzy Sets [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 439-452. |
[10] | TANG Ruixue, QIN Yongbin, CHEN Yanping. Named Entity Recognition Based on Multi-scale Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 506-515. |
[11] | WANG Qiang, LU Xianling. Transformer Object Tracking Algorithm Based on Spatio-Temporal Template Update [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2161-2173. |
[12] | FENG Wenke, SHI Min, ZHU Dengming, LI Zhaoxin. 3D Human Animation Synthesis with Transformer-CVAE [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2137-2147. |
[13] | LI Mingyue, YAN Tao, JING Huahua, LIU Yuan. Low-Light Enhancement Method for Light Field Images by Fusing Multi-scale Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1904-1916. |
[14] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[15] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/