Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (3): 553-573.DOI: 10.3778/j.issn.1673-9418.2307073
• Frontiers·Surveys • Previous Articles Next Articles
GONG Ying, XU Wentao, ZHAO Ce, WANG Binjun
Online:
2024-03-01
Published:
2024-03-01
龚颖,许文韬,赵策,王斌君
GONG Ying, XU Wentao, ZHAO Ce, WANG Binjun. Review of Application of Generative Adversarial Networks in Image Restoration[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 553-573.
龚颖, 许文韬, 赵策, 王斌君. 生成对抗网络在图像修复中的应用综述[J]. 计算机科学与探索, 2024, 18(3): 553-573.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2307073
[1] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016: 331-360. [2] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [3] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [4] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Cambridge: MIT Press, 2014: 2672-2680. [5] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. [6] LECUN Y, BOTTOU L, BENGGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [7] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [8] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6, 2017: 214-223. [9] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[J]. arXiv:1611.04076, 2016. [10] CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in Neural Information Processing Systems 29, 2016: 2180-2188. [11] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347-369. CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369. [12] BAO J, CHEN D, WEN F, et al. CVAE-GAN: fine-grained image generation through asymmetric training[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 2745-2754. [13] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 1125-1134. [14] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin: Springer International Publishing, 2015: 234-241. [15] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 2223-2232. [16] IIZUKA S, SIMOSERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. [17] YANG C, LU X, LIN Z, et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 6721-6729. [18] YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 5505-5514. [19] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Advances in Neural Information Processing Systems 30, 2017: 5767-5777. [20] YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4470-4479. [21] ZHANG H, HU Z, LUO C, et al. Semantic image inpainting with progressive generative networks[C]//Proceedings of the 2018 ACM Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 1939-1947. [22] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin, Heidelberg: Springer, 2012: 37-45. [23] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 2536-2544. [24] YEH R, CHEN C, LIM T, et al. Semantic image inpainting with deep generative models[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6882-6890. [25] REN K, MENG L, FAN C, et al. Least squares DCGAN based semantic image inpainting[C]//Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems, Nanjing, Nov 30-Dec 2, 2018. Piscataway: IEEE, 2018: 890-894. [26] LAHIRI A, JAIN A K, AGRAWAL S, et al. Prior guided GAN based semantic inpainting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 13696-13705. [27] GRAVES A, FERNANDEZ S, SCHMIDHUBER. Multi-dimensional recurrent neural networks[C]//Proceedings of the 17th International Conference on Artificial Neural Networks, Porto, Sep 9-13, 2007. Berlin: Springer, 2007: 549-558. [28] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4401-4410. [29] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 8107-8116. [30] YU Y, ZHANG L. High-fidelity image inpainting with GAN inversion[J]. arXiv:2208.11850v1, 2022. [31] GU J, SHEN Y, ZHOU B. Image processing using multi-code GAN prior[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 3009-3018. [32] POIRIER-GINTER Y, LALONDE J F. Robust unsupervised StyleGAN image restoration[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 18-22, 2023. Piscataway: IEEE, 2023: 22292-22301. [33] ZHENG C, CHAM T J, CAI J. Pluralistic image completion[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1438-1447. [34] ZHAO L, MO Q, LIN S, et al. UCTGAN: diverse image inpainting based on unsupervised cross-space translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5740-5749. [35] LIU H, WAN Z, HUANG W, et al. PD-GAN: probabilistic diverse GAN for image inpainting[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 9371-9381. [36] YILDIRIM B, PEHLIVAN H, BATUHAN B, et al. Diverse inpainting and editing with GAN inversion[J]. arXiv: 2307.15033, 2023. [37] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8183-8192. [38] NAH S, HYUN K, MU L. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 3883-3891. [39] JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 694-711. [40] KUPYN O, MARTYNIUK T, WU J, et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8877-8886. [41] LIN T, DOLL′AR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2117-2125. [42] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv:1807.00734, 2018. [43] KUMAR J, MASTAN I D, RAMAN S. FMD-cGAN: fast motion deblurring using conditional generative adversarial networks[C]//Proceedings of the 6th International Conference on Computer Vision and Image Processing, Rupnagar, Dec 3-5, 2021. Switzerland: Springer, 2021: 362-377. [44] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 770-778. [45] LIM J H, YE J C. Geometric GAN[J]. arXiv:1705.02894, 2017. [46] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861v1, 2017. [47] GONG G, ZHANG K. Local blurred natural image restoration based on self-reference deblurring generative adversarial networks[C]//Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications, Kuala Lumpur, Sep 17-19, 2019. Piscataway: IEEE, 2019: 231-235. [48] ZHANG K, LUO W, ZHONG Y, et al. Deblurring by realistic blurring[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 2737-2746. [49] ZHAO S, ZHANG Z, HONG R, et al. FCL-GAN: a lightweight and real-time baseline for unsupervised blind image deblurring[C]//Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Oct 10-14, 2022. New York: ACM, 2022: 6220-6229. [50] ZHU H Y, PENG X, CHANDRASEKHAR V, et al. DehazeGAN: when image dehazing meets differential programming[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 1234-1240. [51] LI Z, ZHENG C, SHU H, et al. Dual-scale single image dehazing via neural augmentation[J]. IEEE Transactions on Image Processing, 2022, 31: 6213-6223. [52] KOSCHMIEDER H. Theorie der horizontalen Sichtweite[M]//Beitrage zur Physik der freien Atmosphare, Wiesbaden: VS Verlag für Sozialwissenschaften, 1924: 33-53. [53] SWAMI K, DAS S K. CANDY: conditional adversarial networks based fully end-to-end system for single image haze removal[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Piscataway: IEEE, 2018: 3061-3067. [54] LI R D, PAN J S, LI Z C, et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8202-8211. [55] FU M, LIU H, YU Y, et al. DW-GAN: a discrete wavelet transform GAN for nonhomogeneous dehazing[C]//Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 203-212. [56] DONG Y, LIU Y, ZHANG H, et al. FD-GAN: generative adversarial networks with fusion-discriminator for single image dehazing[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 10729-10736. [57] KUMAR A, SANATHRA M, KHARE M, et al. Orthogonal transform based generative adversarial network for image dehazing[J]. arXiv:2206.01743v1, 2022. [58] MEHTA A, SINHA H, MANDAL M, et al. Domain-aware unsupervised hyperspectral reconstruction for aerial image dehazing[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision, Jan 3-8, 2021. Piscataway: IEEE, 2021: 413-422. [59] ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956. [60] JIN X, CHEN Z, LIN J, et al. Unsupervised single image deraining with self-supervised constraints[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019:2761-2765. [61] 王照乾, 孔韦韦, 滕金宝, 等. DenseNet生成对抗网络低照度图像增强方法[J]. 计算机工程与应用, 2022, 58(8): 214-220. WANG Z Q, KONG W W, TENG J B, et al. Low illumination image enhancement method based on DenseNet GAN[J]. Computer Engineering and Applications, 2022, 58(8): 214-220. [62] 杨艳春, 高晓宇, 党建武, 等. 基于WEMD和生成对抗网络重建的红外与可见光图像融合[J]. 光学精密工程, 2022, 30(3): 320-330. YANG Y C, GAO X Y, DANG J W, et al. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Optics and Precision Engineering, 2022, 30(3): 320-330. [63] HAN J, LI W, FANG P, et al. Blind image decomposition[C]//Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 218-237. [64] CHEN J, CHEN J, CHAO H, et al. Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 3155-3164. [65] TRAN L D, NGUYEN S M, ARAI M. GAN-based noise model for denoising real images[C]//Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, Nov 30-Dec 4, 2020. Berlin: Springer, 2020: 560-572. [66] YUAN Y, LIU S, ZHANG J, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 701-710. [67] WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536-2545. [68] YANG Q, YAN P, ZHANG Y, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357. [69] HUANG Z, ZHANG J, ZHANG Y, et al. DU-GAN: generative adversarial networks with dual-domain U-Net-based discriminators for low-dose CT denoising[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1-12. [70] SCHONFELD E, SCHIELE B, KHOREVA A. A U-Net based discriminator for generative adversarial networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 8207-8216. [71] YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6023-6032. [72] YI X, BABYN P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network[J]. Journal of Digital Imaging, 2018, 31: 655-669. [73] KANG E, KOO H J, YANG D H, et al. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography[J]. Medical physics, 2019, 46(2): 550-562. [74] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. [75] MA Y, CHEN X, ZHU W, et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN[J]. Biomedical Optics Express, 2018, 9(11): 5129-5146. [76] HUANG Y, LU Z, SHAO Z, et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 2019, 27(9): 12289-12307. [77] CHEN Z, ZENG Z, SHEN H, et al. DN-GAN: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images[J]. Biomedical Signal Processing and Control, 2020, 55: 101632. [78] GUO A, FANG L, QI M, et al. Unsupervised denoising of optical coherence tomography images with nonlocal-generative adversarial network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-12. [79] SINGH P, PRADHAN G. A new ECG denoising framework using generative adversarial network[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18(2): 759-764. [80] CHATTERJEE S, THAKUR R S, YADAV R N, et al. Review of noise removal techniques in ECG signals[J]. IET Signal Processing, 2020, 14(9): 569-590. [81] MONAKHOVA K, RICHTER S R, WALLER L, et al. Dancing under the stars: video denoising in starlight[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 16241-16251. [82] 鲍先富, 强赞霞, 杨关. 功能解耦和谱特征融合的雪霾消除模型[J]. 计算机工程与应用, 2023, 59(13): 211-219. BAO X F, QIANG Z X, YANG G. Snow and haze elimination model based on function decoupling and edge feature fusion[J]. Computer Engineering and Applications, 2023, 59(13): 211-219. [83] OHAYON G, ADRAI T, VAKSMAN G, et al. High perceptual quality image denoising with a posterior sampling CGAN[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 1805-1813. [84] LUGMAYR A, DANELLJAN M, ROMERO A, et al. Repaint: inpainting using denoising diffusion probabilistic models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 11461-11471. [85] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2014: 13(4): 600-612. [86] DU Y, LI X. Perceptually optimized generative adversarial network for single image dehazing[J]. arXiv:1805.01084v1, 2018. |
[1] | XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br# [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730. |
[2] | GUO Kaihong, ZHOU Yongzhi, WU Zheng, ZHANG Lei. Detection and Removal of Noise in Images Based on Amount of Knowledge Associated with Intuitionistic Fuzzy Sets [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 439-452. |
[3] | WANG Tao, ZHANG Yushu, ZHAO Ruoyu, WEN Wenying, ZHU Youwen. Protecting Face Privacy via Beautification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 244-251. |
[4] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[5] | SUN Jiaze+, TANG Yanmei, WANG Shuyan. Model Robustness Optimization Method Using GAN and Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1139-1146. |
[6] | XU Yan, GUO Xiaoyan, RONG Leilei. Review of Research on Vehicle Re-identification Methods with Unsupervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1017-1037. |
[7] | WANG Cong, WANG Jie, LIU Quanming, LIANG Jiye. Semi-supervised Learning on Graphs Using Adversarial Training with Generated Sample [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 367-375. |
[8] | CHEN Xiaolei, YANG Jia, LIANG Qiduo. Image Inpainting Combining Semantic Priors and Deep Attention Residuals [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2450-2461. |
[9] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[10] | SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438. |
[11] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[12] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[13] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, ZHANG Hongbin. DnRFD:Progressive Residual Fusion Dense Network for Image Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2841-2850. |
[14] | LUO Haiyin, ZHENG Yuhui. Survey of Research on Image Inpainting Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2193-2218. |
[15] | LI Ximing, WU Jiarun, WU Shaoqian. GANs Based Privacy Amplification Against Bounded Adversaries [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1220-1226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/