[1] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2023-07-24]. https://arxiv.org/abs/1511.06939.
[2] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
[3] CHEN Z, ZHANG W, YAN J, et al. Learning dual dynamic representations on time-sliced user-item interaction graphs for sequential recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 231-240.
[4] 韩滕跃, 牛少彰, 张文. 基于对比学习的多模态序列推荐算法[J]. 计算机应用, 2022, 42(6): 1683-1688.
HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning[J]. Journal of Computer Applications, 2022, 42(6): 1683-1688.
[5] QIU R, HUANG Z, YIN H, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York:ACM, 2022: 813-823.
[6] 方阳, 谭真, 陈子阳, 等. 用于冷启动推荐的异质信息网络对比元学习[J]. 软件学报, 2023, 34(10): 4548-4564.
FANG Y, TAN Z, CHEN Z Y, et al. Contrastive meta-learning on heterogeneous information networks for cold-start recommendation[J]. Journal of Software, 2023, 34(10): 4548-4564.
[7] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Conference Information and Knowledge Management. New York: ACM, 2017: 1419-1428.
[8] 陈旭松. 基于用户行为序列建模的推荐算法研究[D]. 合肥: 中国科学技术大学, 2021.
CHEN X S. Recommendation algorithms based on user behavior sequence modeling[D]. Hefei: University of Science and Technology of China, 2021.
[9] 赵港, 王千阁, 姚烽, 等. 大规模图神经网络系统综述[J]. 软件学报, 2022, 33(1): 150-170.
ZHAO G, WANG Q G, YAO F, et al. Survey on large-scale graph neural network systems[J]. Journal of Software, 2022, 33(1): 150-170.
[10] 刘杰, 尚学群, 宋凌云, 等. 图神经网络在复杂图挖掘上的研究进展[J]. 软件学报, 2022, 33(10): 3582-3618.
LIU J, SHANG X Q, SONG L Y, et al. Progress of graph neural networks on complex graph mining[J]. Journal of Software, 2022, 33(10): 3582-3618.
[11] 马帅, 刘建伟, 左信. 图神经网络综述[J]. 计算机研究与发展, 2022, 59(1): 47-80.
MA S, LIU J W, ZUO X. Survey on graph neural network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80.
[12] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 346-353.
[13] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178.
[14] CHANG J, GAO C, ZHENG Y, et al. Sequential recommendation with graph neural networks[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM,2021: 378-387.
[15] XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273.
[16] LIU Z, CHEN Y, LI J, et al. Contrastive self-supervised sequential recommendation with robust augmentation[EB/OL]. [2023-07-24]. https://arxiv.org/abs/2108.06479.
[17] CHEN Y, LIU Z, LI J, et al. Intent contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2172-2182.
[18] 余文婷, 吴云, 林建. 融合多模态自监督图学习的视频推荐模型[J]. 计算机应用研究, 2023, 40(6): 1679-1685.
YU W T, WU Y, LIN J. Self-supervised graph learning of fusing multi-modal for video recommendation model[J]. Application Research of Computers, 2023, 40(6): 1679-1685.
[19] SEDHAIN S, MENON A K, SANNER S, et al. Autorec: autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 111-112.
[20] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
[21] WANG J, DING K, HONG L, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1101-1110.
[22] WANG C, MA W, CHEN C, et al. Sequential recommendation with multiple contrast signals[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-27.
[23] YE Y, XIA L, HUANG C. Graph masked autoencoder for sequential recommendation[EB/OL]. [2023-07-24]. https://arxiv.org/abs/2305.04619.
[24] YANG Y, HUANG C, XIA L, et al. Debiased contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1063-1073. |