Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (5): 1135-1159.DOI: 10.3778/j.issn.1673-9418.2309079
• Frontiers·Surveys • Previous Articles Next Articles
WANG Xiaoxia, LI Leixiao, LIN Hao
Online:
2024-05-01
Published:
2024-04-29
王晓霞,李雷孝,林浩
WANG Xiaoxia, LI Leixiao, LIN Hao. Survey of Research on SMOTE Type Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1135-1159.
王晓霞, 李雷孝, 林浩. SMOTE类算法研究综述[J]. 计算机科学与探索, 2024, 18(5): 1135-1159.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2309079
[1] 石洪波, 陈雨文, 陈鑫. SMOTE 过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14(6): 1073-1083. SHI H B, CHEN Y W, CHEN X. Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 2019, 14(6): 1073-1083. [2] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [3] 高欣, 纪维佳, 赵兵, 等. 不平衡数据集下基于CVAE-CNN模型的智能电表故障多分类方法[J]. 电网技术, 2021, 45(8): 3052-3060. GAO X, JI W J, ZHAO B, et al. Multi-classification method of smart meter fault types based on CVAE-CNN model under imbalanced dataset[J]. Power System Technology, 2021, 45(8): 3052-3060. [4] ARAFA A, EL-FISHAWV N, BADAWY M, et al. RN-SMOTE: reduced noise SMOTE based on DBSCAN for enhancing imbalanced data classification[J]. Journal of King Saud University(Computer and Information Sciences), 2022, 34(8): 5059-5074. [5] ?ZDEMIR A, POLAT K, ALHUDHAIF A. Classification of imbalanced hyperspectral images using SMOTE-based deep learning methods[J]. Expert Systems with Applications, 2021, 178: 114986. [6] ZHANG C, ZHOU Y, GUO J, et al. Research on classification method of high-dimensional class-imbalanced datasets based on SVM[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 1765-1778. [7] MONIZ N, BRANCO P, TORGO L. Resampling strategies for imbalanced time series[C]//Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2016: 282-291. [8] CAMACHO L, DOUZAS G, BACAO F. Geometric SMOTE for regression[J]. Expert Systems with Applications, 2022, 193: 116387. [9] DUBEY H, PUDI V. Class based weighted k-nearest neighbor over imbalance dataset[C]//Advances in Knowledge Discovery and Data Mining: Proceedings of the 17th Pacific-Asia Conference, Gold Coast, Apr 14-17, 2013. Berlin, Heidelberg: Springer, 2013: 305-316. [10] 王乐, 韩萌, 李小娟, 等. 不平衡数据集分类方法综述[J]. 计算机工程与应用, 2021, 57(22): 42-52. WANG L, HAN M, LI X J, et al. Review of classification methods for unbalanced data sets[J]. Computer Engineering and Applications, 2021, 57(22): 42-52. [11] 周玉, 孙红玉, 房倩, 等. 不平衡数据集分类方法研究综述[J]. 计算机应用研究, 2022, 39(6): 1615-1621. ZHOU Y, SUN H Y, FANG Q, et al. Review of imbalanced data classification methods[J]. Application Research of Computers, 2022, 39(6): 1615-1621. [12] WANG S, DAI Y, SHEN J, et al. Research on expansion and classification of imbalanced data based on SMOTE algorithm[J]. Scientific Reports, 2021, 11(1): 24039. [13] 刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 11. LIU D X, QIAO S J, ZHANG Y Q, et al. A survey on data sampling methods in imbalance classification[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(7): 11. [14] LU Y, CHENG Y M, TANG Y Y. Bayes imbalance impact index: a measure of class imbalanced data set for classification problem[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(9): 3525-3539. [15] KIM K H, SOHN S Y. Hybrid neural network with cost-sensitive support vector machine for class-imbalanced multi-modal data[J]. Neural Networks, 2020, 130. DOI: 10.1016/j.neunet.2020.06.026. [16] ZHANG C, TAN K C, LI H Z, et al. A cost-sensitive deep belief network for imbalanced classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(1): 109-122. [17] CHEN G, ZHANG Y, FU P, et al. Imbalanced data classification based on scaling kernel-based support vector machine[J]. Neural Computing & Applications, 2014. DOI:10.1007/s00521-014-1584-2. [18] CAO B, LIU Y Q, HOU C Y, et al. Expediting the accuracy-improving process of SVMs for class imbalance learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(11): 3550-3567. [19] DE AIDA H G, GONZALO C G, NICOLAS G P. Ensembles of feature selectors for dealing with class-imbalanced datasets: a proposal and comparative study[J]. Information Sciences, 2020, 540: 89-116. [20] NEKOOEIMEHR I, LAI-YUEN S K. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets[J]. Expert Systems with Applications, 2016, 46: 405-416. [21] YI X, XU Y, HU Q, et al. ASN-SMOTE: a synthetic minority oversampling method with adaptive qualified synthesizer selection[J]. Complex & Intelligent Systems, 2022, 8: 2247-2272. [22] YI H, JIANG Q, YAN X, et al. Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application[J]. IEEE Transactions on Industrial Informatics, 2020, 17(9): 5867-5875. [23] ELREEDY D, ATIYA A F. A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance[J]. Information Sciences, 2019, 505: 32-64. [24] SOLTANZADEH P, HASHEMZADEH M. RCSMOTE: range-controlled synthetic minority over-sampling technique for handling the class imbalance problem[J]. Information Sciences, 2020, 542. DOI: 10.1016/j.ins.2020.07.014. [25] BARUA S, ISLAM M, YAO X, et al. MWMOTE—majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(2): 405-425. [26] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing. Berlin, Heidelberg: Springer, 2005: 878-887. [27] CHEN Y, PEDRYCZ W, YANG J. A new boundary-degree-based oversampling method for imbalanced data[J]. Applied Intelligence, 2023, 53(22): 26518-26541. [28] LIANG X, JIANG A, LI T, et al. LR-SMOTE—an improved unbalanced data set oversampling based on K-means and SVM[J]. Knowledge-Based Systems, 2020, 196: 105845. [29] BUNKHUMPORPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]//Advances in Knowledge Discovery and Data Mining: Proceedings of the 13th Pacific-Asia Conference, Bangkok, Apr 27-30, 2009. Berlin, Heidelberg: Springer, 2009: 475-482. [30] LI J, ZHU Q, WU Q, et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences, 2021, 565: 438-455. [31] SHEN C, ZHANG H, MENG S, et al. Augmented data driven self-attention deep learning method for imbalanced fault diagnosis of the HVAC chiller[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105540. [32] DOUZAS G, BACAO F. Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE[J]. Information Sciences, 2019, 501: 118-135. [33] DOUZAS G, RAUCH R, BACAO F. G-SOMO: an over-sampling approach based on self-organized maps and geometric SMOTE[J]. Expert Systems with Applications, 2021, 183(2): 115230. [34] YUAN X, CHEN S, ZHOU H, et al. CHSMOTE: convex hull-based synthetic minority oversampling technique for alleviating the class imbalance problem[J]. Information Sciences, 2023, 623: 324-341. [35] 魏迎梅, 王涌, 吴泉源, 等. 碰撞检测中的固定方向凸包包围盒的研究[J]. 软件学报, 2001, 12(7): 1056-1063. WEI Y M, WANG Y, WU Q Y, et al. Research on fixed direction hull bounding volume in collision detection[J]. Journal of Software, 2001, 12(7): 1056-1063. [36] HE H, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway: IEEE, 2008: 1322-1328. [37] WANG X, GONG J, SONG Y, et al. Adaptively weighted three-way decision oversampling: a cluster imbalanced-ratio based approach[J]. Applied Intelligence, 2023, 53(1): 312-335. [38] WEI J N, HUANG H S, YAO L G, et al. NI-MWMOTE: an improving noise-immunity majority weighted minority over-sampling technique for imbalanced classification problems[J]. Expert Systems with Applications, 2020, 158: 113504. [39] 盛凯, 刘忠, 周德超, 等. 面向不平衡分类的IDP-SMOTE重采样算法[J]. 计算机应用研究, 2019, 36(1): 115-118. SHENG K, LIU Z, ZHOU D C, et al. IDP-SMOTE resampling algorithm for imbalanced classification[J]. Application Research of Computers, 2019, 36(1): 115-118. [40] VO M T, NGUYEN T, VO H A, et al. Noise-adaptive synthetic oversampling technique[J]. Applied Intelligence, 2021, 51(11): 7827-7836. [41] DAI F, SONG Y, SI W, et al. Improved CBSO: a distributed fuzzy-based adaptive synthetic oversampling algorithm for imbalanced judicial data[J]. Information Sciences, 2021,569: 70-89. [42] LENG Q, GUO J, JIAO E, et al. NanBDOS: adaptive and parameter-free borderline oversampling via natural neighbor search for class-imbalance learning[J]. Knowledge-Based Systems, 2023, 274: 110665. [43] KOSOLWATTANA T, LIU C, HU R, et al. A self-inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare[J]. BioData Mining, 2023, 16(1): 15. [44] WANG X, XU J, ZENG T, et al. Local distribution-based adaptive minority oversampling for imbalanced data classification[J]. Neurocomputing, 2021, 422: 200-213. [45] YAN Y, JIANG Y, ZHENG Z, et al. LDAS: local density-based adaptive sampling for imbalanced data classification[J]. Expert Systems with Applications, 2022, 191: 116213. [46] PAN T, ZHAO J, WU W, et al. Learning imbalanced data-sets based on SMOTE and Gaussian distribution[J]. Information Sciences, 2020, 512: 1214-1233. [47] PRUENGKARN R, WONG K W, FUNG C C. Multiclass imbalanced classification using fuzzy C-mean and SMOTE with fuzzy support vector machine[C]//Proceedings of the 24th International Conference on Neural Information Processing, Guangzhou, Nov 14-18, 2017. Cham: Springer, 2017: 67-75. [48] 楼晓俊, 孙雨轩, 刘海涛. 聚类边界过采样不平衡数据分类方法[J]. 浙江大学学报(工学版), 2013(6): 944-950. LOU X J, SUN Y X, LIU H T. Clustering boundary over-sampling classification method for imbalanced data sets[J]. Journal of Zhejiang University (Engineering Science), 2013(6): 944-950. [49] MOUTAOUAKIL K E, ROUDANI M, OUISSARI A E. Optimal entropy genetic fuzzy-C-means SMOTE (OEGFCM-SMOTE)[J]. Knowledge-Based Systems, 2023, 262: 110235. [50] HUANG X, ZHANG C Z, YUAN J. Predicting extreme financial risks on imbalanced dataset: a combined kernel FCM and kernel SMOTE based SVM classifier[J]. Computational Economics, 2020, 56: 187-216. [51] MA L, FAN S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests[J]. BMC Bioinformatics, 2017, 18(1): 1-18. [52] WEI J, HUANG H, YAO L, et al. IA-SUWO: an improving adaptive semi-unsupervised weighted oversampling for imbalanced classification problems[J]. Knowledge-Based Systems, 2020, 203: 106116. [53] BUNKHUMPORPAT C S K, LURSINSAP C. DBSMOTE: density-based synthetic minority over-sampling technique[J]. Applied Intelligence, 2012, 36(3): 664-684. [54] TAO Y, ZHANG Y, JIANG B. DBCSMOTE: a clustering-based oversampling technique for data-imbalanced warfarin dose prediction[J]. BMC Medical Genomics, 2020, 13. DOI: 10.1186/s12920-020-00781-2. [55] MENG D, LI Y. An imbalanced learning method by combining SMOTE with center offset factor[J]. Applied Soft Computing, 2022, 120: 108618. [56] SáEZ J A, LUENGO J, STEFANOWSKI J, et al. SMOTE-IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering[J]. Information Sciences, 2015, 291: 184-203. [57] RADWAN A M. Enhancing prediction on imbalance data by thresholding technique with noise filtering[C]//Proceedings of the 8th International Conference on Information Technology. Piscataway: IEEE, 2017: 399-404. [58] ZHAO X, DERONG S, YUE K, et al. A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3740-3753. [59] BISPO A, PRUDENCIO R, VERAS D. Instance selection and class balancing techniques for cross project defect prediction[C]//Proceedings of the 7th Brazilian Conference on Intelligent Systems. Piscataway: IEEE, 2018: 552-557. [60] ZHANG J, NG W Y. Stochastic sensitivity measure-based noise filtering and oversampling method for imbalanced classification problems[C]//Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2018: 403-408. [61] LIN M, ZHU X, HUA T, et al. Detection of ionospheric scintillation based on XGBoost model improved by SMOTE-ENN technique[J]. Remote Sensing, 2021, 13(13): 2577. [62] GUAN H, ZHANG Y, XIAN M, et al. SMOTE-WENN: solving class imbalance and small sample problems by oversampling and distance scaling[J]. Applied Intelligence, 2021, 51: 1394-1409. [63] PURI A, KUMAR G M. Improved hybrid bag-boost ensemble with K-means-SMOTE-ENN technique for handling noisy class imbalanced data[J]. The Computer Journal, 2022, 65(1): 124-138. [64] ZHAO S, MENG J, WEKESA J S, et al. Identification of small open reading frames in plant lncRNA using class-imbalance learning[J]. Computers in Biology and Medicine, 2023, 157: 106773. [65] LI J, ZHU Q, WU Q, et al. SMOTE-NaN-DE: addressing the noisy and borderline examples problem in imbalanced classification by natural neighbors and differential evolution[J]. Knowledge-Based Systems, 2021, 223: 107056. [66] BELLINGER C, DRUMMOND C, JAPKOWICZ N. Beyond the boundaries of SMOTE: a framework for manifold-based synthetically oversampling[C]//Proceedings of the 2016 European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Sep 19-23, 2016. Cham: Springer, 2016: 248-263. [67] HANIFAH F S, WIJAYANTO H, KURNIA A. SMOTE bagging algorithm for imbalanced dataset in logistic regression analysis (case: credit of bank X)[J]. Applied Mathematical Sciences, 2015, 9: 6857-6865. [68] WANG J, YUN B, HUANG P, et al. Applying threshold SMOTE algoritwith attribute bagging to imbalanced data-sets[C]//Proceedings of the 8th International Conference on Rough Sets and Knowledge Technology, Halifax, Oct 11-14, 2013. Berlin, Heidelberg: Springer, 2013: 221-228. [69] BRANCO P, TORGO L, RIBEIRO R P. REBAGG: resampled bagging for imbalanced regression[C]//Proceedings of the 2nd International Workshop on Learning with Imbalanced Domains: Theory and Applications, Dublin, Sep 10, 2018: 67-81. [70] WANG Q, LUO Z H, HUANG J C, et al. A novel ensemble method for imbalanced data learning: bagging of extrapolation-SMOTE SVM[J]. Computational Intelligence & Neuroscience, 2017: 1827016. [71] SUN J, LANG J, FUJITA H, et al. Imbalanced enterprise credit evaluation with DTE-SBD: decision tree ensemble based on SMOTE and bagging with differentiated sampling rates[J]. Information Sciences, 2018, 425: 76-91. [72] LV M, REN Y, CHEN Y. Research on imbalanced data: based on SMOTE-AdaBoost algorithm[C]//Proceedings of the 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway: IEEE, 2019: 1165-1170. [73] LLEBERI E, SUN Y, WANG Z. Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost[J]. IEEE Access, 2021, 9: 165286-165294. [74] DING H, WEI B, GU Z R, et al. KA-Ensemble: towards imbalanced image classification ensembling under-sampling and over-sampling[J]. Multimedia Tools and Applications, 2020, 79: 14871-14888. [75] CHEN Z, DUAN J, KKANG L, et al. A hybrid data-level ensemble to enable learning from highly imbalanced dataset[J]. Information Sciences, 2021, 554: 157-176. [76] GAO X, REN B, ZHANG H, et al. An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling[J]. Expert Systems with Applications, 2020, 160: 113660. [77] 童莹萍, 冯伟, 宋怡佳, 等. 面向不平衡高光谱遥感分类的SMOTE和旋转森林动态集成算法[J]. 遥感学报, 2022, 26(11): 2369-2381. TONG Y P, FENG W, SONG Y J, et al. Dynamic ensemble algorithm of SMOTE and rotation forest for imbalanced hyperspectral remote sensing classification[J]. National Remote Sensing Bulletin, 2022, 26(11): 2369-2381. [78] SAGLAM F, CENGIZ M A. A novel SMOTE-based resampling technique trough noise detection and the boosting procedure[J]. Expert Systems with Applications, 2022, 200: 117023. [79] ZHANG A, YU H, ZHOU S, et al. Instance weighted SMOTE by indirectly exploring the data distribution[J]. Knowledge-Based Systems, 2022, 249: 108919. [80] 陈圣灵, 沈思淇, 李东升. 基于样本权重更新的不平衡数据集成学习方法[J]. 计算机科学, 2018, 45(7): 31-37. CHEN S L, SHEN S Q, LI D S. Ensemble learning method for imbalanced data based on sample weight updating[J]. Computer Science, 2018, 45(7): 31-37. [81] ABUQADDOM I, HUDAIB A. Cost-sensitive learner on hybrid SMOTE-ensemble approach to predict software defects[M]//Computational and Statistical Methods in Intelligent Systems. Cham: Springer, 2019: 12-21. [82] SEBASTIAN M, CARLA V, ALBERTO F, et al. FW-SMOTE: a feature-weighted oversampling approach for imbalanced classification[J]. Pattern Recognition, 2022, 124: 108511. [83] NGUYEN H M, COOPER E W, KAMEI K. Borderline over-sampling for imbalanced data classification[J]. International Journal of Knowledge Engineering and Soft Data Paradigms, 2011, 3(1): 4-21. [84] TAO X, ZHENG Y, CHEN W, et al. SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning[J]. Information Sciences, 2022, 588: 13-51. [85] GONG J. A novel oversampling technique for imbalanced learning based on SMOTE and genetic algorithm[C]//Proceedings of the 28th International Conference on Neural Information Processing, Sanur, Dec 8-12, 2021. Cham: Springer, 2021: 201-212. [86] ZHANG A, YU H, HUAN Z, et al. SMOTE-RKNN: a hybrid re-sampling method based on SMOTE and reverse k-nearest neighbors[J]. Information Sciences, 2022, 595: 70-88. [87] REVATHI M, RAMYACHITRA D. A modified borderline smote with noise reduction in imbalanced datasets[J]. Wireless Personal Communications, 2021, 121: 1659-1680. [88] SHON H S, BATBAATAR E, KIM K O, et al. Classification of kidney cancer data using cost-sensitive hybrid deep learning approach[J]. Symmetry, 2020, 12(1): 154. [89] ZHANG S. Cost-sensitive KNN classification[J]. Neurocomputing, 2020, 391: 234-242. [90] CAO C, CUI Z, WANG L, et al. Cost-sensitive awareness-based SAR automatic target recognition for imbalanced data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. [91] MATHEW J, PANG C K, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(9): 4065-4076. [92] REN J, WANG Y, CHEUNG Y, et al. Grouping-based over-sampling in kernel space for imbalanced data classification[J]. Pattern Recognition, 2023, 133: 108992. [93] WANG Z, LIU T, WU X, et al. A diagnosis method for imbalanced bearing data based on improved smote model combined with CNN-AM[J]. Journal of Computational Design and Engineering, 2023, 10(5): 1930-1940. [94] SO B, BOUCHER J P, VALDEZ E A. Cost-sensitive multi-class adaboost for understanding driving behavior based on telematics[J]. ASTIN Bulletin: The Journal of the IAA, 2021, 51(3): 719-751. [95] ZHOU C, LIU B, WANG S. CMO-SMOTE: misclassification cost minimization oriented synthetic minority oversampling technique for imbalanced learning[C]//Proceedings of the 8th International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway: IEEE, 2016: 353-358. [96] RAGHUWANSHI B S. SMOTE based class-specific extreme learning machine for imbalanced learning[J]. Knowledge-Based Systems, 2020, 187. DOI: 10.1016/j.knosys.2019.06.022. [97] DELGADO R J. Bayesian network-based over-sampling method (BOSME) with application to indirect cost-sensitive learning[J]. Scientific Reports [2023-08-26]. DOI: 10.1038/ s41598-022-12682-8. [98] KOZIARSKI M, WONIAK M. CCR: a combined cleaning and resampling algorithm for imbalanced data classification[J]. International Journal of Applied Mathematics and Computer Science, 2017, 27(4): 727-736. [99] 鲍大忙. 迁移学习框架下不平衡分类问题研究[D]. 马鞍山: 安徽工业大学, 2017. BAO D M. Research on imbalanced classification problems in the framework of transfer learning[D]. Ma’anshan:Anhui University of Technology, 2017. [100] LI H, LIU H, HU Y. Prediction of unbalanced financial risk based on GRA-TOPSIS and SMOTE-CNN[J]. Scientific Programming, 2022. DOI: 10.1155/2022/8074516. [101] 琚春华, 陈冠宇, 鲍福光. 基于kNN-Smote-LSTM的消费金融风险检测模型——以信用卡欺诈检测为例[J]. 系统科学与数学, 2021, 41(2): 481-498. JU C H, CHEN G Y, BAO F G. KNN-Smote-LSTM based consumer financial risk detection model: a case credit card fraud detection[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(2): 481-498. [102] 冯伟, 龙以君, 全英汇, 等. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J/OL]. 系统工程与电子技术 [2023-09-06]. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1630.008.html. FENG W, LONG Y J, QUAN Y H, et al. Multi-class imbalance remote sensing image classification based on SMOTE and deep transfer convolutional neural network[J/OL]. Systems Engineering and Electronics [2023-09-06]. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1630.008.html. [103] CHOUHARY R, SHUKLA S. SMOTE based weighted kernel extreme learning machine for imbalanced classification problems[C]//Proceedings of the 2020 International Conference on Internet of Things and Connected Technologies. Cham: Springer, 2020: 193-200. [104] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B (Cybernetics), 2011, 42(2): 513-529. [105] KOZIARSKI M K, WOZNIAK M. Radial-based undersampling for imbalanced data classification[J]. Neuro-computing, 2019, 343: 19-33. DOI: 10.1016/j.neucom.2018.04.089. [106] GONG Z, CHEN H. Model-based oversampling for imbalanced sequence classification[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management, Indianapolis, Oct 24-28, 2016. New York: ACM, 2016: 1009-1018. [107] KARUNASINGHA N, JAYASEKARA B G, HEVAPATHIGE A. OC-SMOTE-NN: a deep learning-based approach for imbalanced classification[C]//Proceedings of the 13th IEEE Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2023: 943-948. [108] PAN C, PENG K, CHEN T, et al. Power-law-based synthetic minority oversampling technique on imbalanced serum surface-enhanced raman spectroscopy data for cancer screening[J]. Advanced Intelligent Systems, 2023, 5(7): 2300006. [109] NAKAMURA M, KAJIWARA Y, OTSUKA, et al. LVQ-SMOTE-learning vector quantization based synthetic minority over-sampling technique for biomedical data[J]. BioData Mining, 2013, 6(1): 1-10. [110] 张成刚, 宋佳智, 姜静清, 等. 一种改进的降噪自编码神经网络不平衡数据分类算法[J]. 计算机应用研究, 2017, 34(5): 1329-1332. ZHANG C G, SONG J Z, JIANG J Q, et al. Imbalanced data classification algorithm of improved denoising auto-encoder neural network[J]. Application Research of Computers, 2017, 34(5): 1329-1332. [111] DABLAIN D, KRAWCZYK B, CHAWLA N V. DeepSMOTE: fusing deep learning and SMOTE for imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6390-6404. [112] LIU D, ZHONG S, LIN L, et al. Deep attention SMOTE: data augmentation with a learnable interpolation factor for imbalanced anomaly detection of gas turbines[J]. Computers in Industry, 2023, 151: 103972. [113] PEREZ-ORTIZ M, GUTIERREZ P A, HERVAS-M C, et al. Graph-based approaches for over-sampling in the context of ordinal regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1233-1245. [114] ZHU T F, LIN Y P, LIU Y H, et al. Minority oversampling for imbalanced ordinal regression[J]. Nowledge-Based Systems, 2019, 166: 140-155. [115] NGUYEN T, MENGERSEN K, SOUS D, et al. SMOTE-CD: SMOTE for compositional data[J]. PLoS One, 2023, 18(6): e0287705. [116] WEI Y, WANG Z, WAN H, et al. Promoting inclusive water governance and forecasting the structure of water consumption based on compositional data: a case study of Beijing[J]. Science of the Total Environment, 2018, 634: 407-416. [117] YOUNIS R, FISICHELLA M. FLY-SMOTE: re-balancing the non-IID IoT edge devices data in federated learning system[J]. IEEE Access, 2022, 10: 65092-65102. [118] ZHU H, XU J, LIU S, et al. Federated learning on non-IID data: a survey[J]. Neurocomputing, 2021, 465: 371-390. [119] NAPIERALA K, STEFANOWSKI J, WILK S. Learning from imbalanced data in presence of noisy and borderline examples[C]//Proceedings of the 7th International Conference on Rough Sets and Current Trends in Computing, Warsaw, Jun 28-30, 2010. Berlin, Heidelberg: Springer, 2010: 158-167. [120] BARANDELA R, SáNCHEZ J S, GARCíA V, et al. Strategies for learning in class imbalance problems[J]. Pattern Recognition, 2003, 36(3): 849-851. [121] BHARDWAJ M, BHATNAGAR V, SHARMA K. Cost- effectiveness of classification ensembles[J]. Pattern Recognition, 2016, 57: 84-96. [122] FERNáNDEZ-BALDERA A, BUENAPOSADA J M, BAUMELA L, et al. BAdaCost: multi-class boosting with costs[J]. Pattern Recognition, 2018, 79: 467-479. [123] LU H, YANG L, YAN K, et al. A cost-sensitive rotation forest algorithm for gene expression data classification[J]. Neurocomputing, 2017, 228: 270-276. [124] LIM P, GOH C K, TAN K C. Evolutionary cluster-based synthetic oversampling ensemble (ECO-ensemble) for imbalance learning[J]. IEEE Transactions on Cybernetics, 2016, 47(9): 2850-2861. [125] HARVEY D Y, TODD M D. Automated feature design for numeric sequence classification by genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 474-489. [126] CHEN C, WU X, ZUO E, et al. R-GDORUS technology: effectively solving the Raman spectral data imbalance in medical diagnosis[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 235: 104762. [127] LIN C T, HSIEH T Y, LIU Y T, et al. Minority oversampling in kernel adaptive subspaces for class imbalanced datasets[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(5): 950-962. [128] BATUWITA R, PALADE V. FSVM-CIL: fuzzy support vector machines for class imbalance learning[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(3): 558-571. [129] MOSTAFAEI S, AHMADI A, SHAHRABI J. USWAVG-BS: under-sampled weighted averaged borderline SMOTE to handle data intrinsic difficulties[J]. Expert Systems with Applications, 2023, 227: 120379. [130] STEFANOWSKI J. Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data[M]//Emerging Paradigms in Machine Learning. Berlin, Heidelberg: Springer, 2013: 277-306. [131] ALCAL-FDEZ J, FERNNDEZ A, LUENGO J, et al. Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic and Soft Computing, 2011, 17(2/3): 255-287. [132] FRANK A. UCI machine learning repository[EB/OL]. [2023-06-14]. http://archive.ics.uci.edu/ml. [133] 李敏波, 董伟伟. 面向不平衡数据集的汽车零部件质量预测[J]. 中国机械工程, 2022, 33(1): 88-96. LI M B, DONG W W. Quality prediction of automotive parts for imbalanced datasets[J]. China Mechanical Engineering, 2022, 33(1): 88-96. [134] JAHMUNAH V, NG E Y K, SAN T R, et al. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals[J]. Computers in Biology and Medicine, 2021, 134: 104457. [135] LIU J, CHEN X X, FANG L, et al. Mortality prediction based on imbalanced high-dimensional ICU big data[J]. Computers in Industry, 2018, 98: 218-225. [136] LIANG J, YE G, GUO J, et al. Reducing false-positives in lung nodules detection using balanced datasets[J]. Frontiers in Public Health, 2021, 9: 671070. [137] 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547. LIU Y, YANG K. Credit fraud detection for extremely imbalanced data based on ensembled deep learning[J]. Journal of Computer Research and Development, 2021, 58(3): 539-547. [138] 王鲁, 郑家皓, 陈远高, 等. 面向不平衡数据集多阶段集成模型的信用风险评估方法: CN202210795515.X[P]. 2022-09-30. WANG L, ZHENG J H, CHEN Y G, et al. A credit risk assessment approach for multi-stage integrated modelling of unbalanced datasets: CN202210795515.X[P]. 2022-09-30. [139] 周文泳, 冯丽霞, 段春艳. 基于不平衡数据的公司破产预测研究[J]. 同济大学学报(自然科学版), 2022(2): 283-290. ZHOU W Y, FENG L X, DUAN C Y. Research on company bankruptcy prediction based on unbalanced data[J]. Journal of Tongji University (Natural Science), 2022(2): 283-290. [140] 吴志峰, 黄若尘, 魏昕, 等. 非均衡IPTV数据集下的用户报障预测[J]. 数据采集与处理, 2018, 33(1): 75-84. WU Z F, HUANG R C, WEI X, et al. Prediction for user’s complaint in imbalanced IPTV dataset[J]. Journal of Data Acquisition and Processing, 2018, 33(1): 75-84. [141] 庄文兵, 熊小伏, 李勇杰, 等. 一种基于天气雷达数据的强对流风力等级预测方法: CN201710978296.8[P]. 2017-12-29. ZHUANG W B, XIONG X F, LI Y J, et al. A prediction method of strong convective wind level based on weather radar data: CN201710978296.8[P]. 2017-12-29. [142] 廖一星, 潘雪增. 面向不平衡文本的特征选择方法[J]. 电子科技大学学报, 2012, 41(4): 592-595. LIAO Y X, PAN X Z. Feature selection method on imbalanced text[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(4): 592-595. [143] 张玉玲, 尹传环. 基于特征频率的安卓恶意软件异常检测的研究[J]. 智能系统学报, 2018, 13(2): 168-173. ZHANG Y L, YIN C H. Android malware outlier detection based on feature frequency[J]. CAAI Transactions on Intelligent Systems, 2018, 13(2): 168-173. [144] GHORBANI M, KAZI A, BAGHSHAH M S, et al. RA-GCN: graph convolutional network for disease prediction problems with imbalanced data[J]. Medical Image Analysis, 2022, 75: 102272. [145] BATISTA G E A P A, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29. [146] HE H, MA Y. Assessment metrics for imbalanced learning[M]. Wiley-IEEE Press, 2013. [147] YASEN J, PU F D. Performance measures in evaluating machine learning based bioinformatics predictors for classifications[J]. Quantitative Biology, 2016, 4: 320-330. [148] POWERS D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. arXiv:2010.16061, 2020. [149] AL HELAL M, HAYDAR M S, MOSTAFA S A M. Algorithms efficiency measurement on imbalanced data using geometric mean and cross validation[C]//Proceedings of the 2016 International Workshop on Computational Intelligence. Piscataway: IEEE, 2016: 110-114. |
[1] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
[2] | HE Yulin, CHEN Jiaqi, HUANG Qihang, Philippe Fournier-Viger, HUANG Zhexue. Self-training Semi-supervised Learning Algorithm for New Class Detection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2184-2197. |
[3] | DAN Yufang, TAO Jianwen, ZHAO Yue, PAN Jie, ZHAO Baoqi. Multi-model Adaptation Method of Possibilistic Clustering Assumption [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1329-1342. |
[4] | XU Yan, GUO Xiaoyan, RONG Leilei. Review of Research on Vehicle Re-identification Methods with Unsupervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1017-1037. |
[5] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[6] | WANG Benyu, GU Yijun, PENG Shufan. Semi-supervised Community Detection Algorithm Based on Particle Competition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 608-619. |
[7] | WANG Cong, WANG Jie, LIU Quanming, LIANG Jiye. Semi-supervised Learning on Graphs Using Adversarial Training with Generated Sample [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 367-375. |
[8] | MA Ziping, TAN Lidao, MA Jinlin, CHEN Yong. SMViT: Lightweight Siamese Masked Vision Transformer Model for Diagnosis of COVID-19 [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2499-2510. |
[9] | XIE Zipeng, BAO Chongming, ZHOU Lihua, WANG Chongyun, KONG Bing. EM Clustering Oversampling Algorithm for Class Imbalanced Data [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 228-237. |
[10] | YANG Jun, LEI Xiwen. Co-segmentation of 3D Point Cloud Shape Clusters Based on Weakly Supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2121-2131. |
[11] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[12] | CAI Yuhong, WU Xiaojun. Intra-class Low-Rank Subspace Learning for Face Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2851-2859. |
[13] | LI Yong, GAO Can, LIU Zirong, LUO Jintao. Dynamically Consistent and Confident Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2557-2564. |
[14] | LIU Yu, MENG Min, WU Jigang. Semi-supervised Multi-view Classification via Consistency Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 242-252. |
[15] | LI Huirong, ZHANG Lin, ZHAO Pengjun, LI Chao. Semi-supervised Concept Factorization Algorithm with Local Coordinate Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 379-388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/