[1] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[2] ZHU S G, CHENG X, SU S. Knowledge-based question answering by tree-to-sequence learning[J]. Neurocomputing, 2020, 372: 64-72.
[3] LOGAN R, LIU N, PETERS M, et al.Using knowledge graphs for fact-aware language modeling[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5962-5971.
[4] YAO X C, VAN D.Information extraction over structured data: ouestion answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 956-966.
[5] LEHMANN J, ISELE R, JAKOB M, et al. DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
[6] REBELE T, SUCHANEK F, HOFFART J, et al. YAGO: a multilingual knowledge base from Wikipedia, Wordnet, and Geonames[C]//Proceedings of the 16th International Semantic Web Conference, Kobe, Oct 17-21, 2016: 177-185.
[7] LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]//Proceedings of the 2019 European Semantic Web Conference, Portorož, Jun 2-6, 2019:459-474.
[8] 庄严, 李国良, 冯建华. 知识库实体对齐技术综述[J]. 计算机研究与发展, 2016, 53(1): 165-192.
ZHUANG Y, LI G L, FENG J H. A survey on entity alignment of knowledge base[J]. Journal of Computer Research and Development, 2016, 53(1): 165-192.
[9] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606.
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606.
[10] BORDES A, NICOLAS U, ALBERTO G D, et al. Tranlating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 2787-2795.
[11] SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 2018 International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 4396-4402.
[12] NIGAM K, MCCALLUM A K, MITCHELL T M. Co-training for text classification[C]//Proceedings of the 9th International Conference on Information and Knowledge Management, Washington, 2000: 306-313.
[13] TRISEDYA B D,QI J Z, ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2019: 297-304.
[14] SUN Z Q, HU W, LI C K. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the 16th International Semantic Web Conference, 2017: 628-644.
[15] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-08-14].https://arxiv.org/abs/1609.02907.
[16] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL]. [2023-08-14]. https://arxiv.org/abs/1710.10903.
[17] WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 349-357.
[18] LIU F Y, CHEN M H, ROTH D, et al. Visual pivoting for (unsupervised) entity alignment[C]//Proceedings of the 35th Conference on Association for the Advancement of Artificial Intelligence. Menlo Park: AAAI, 2021: 4257-4266.
[19] MAO X, WANG W T, WU Y B, et al. Boosting the speed of entity alignment 10×: dual attention matching network with normalized hard sample mining[C]//Proceedings of the 2021 International Conference of World Wide Web. New York: ACM, 2021: 821-832.
[20] MAO X, WANG W T, WU Y B, et al. Are negative samples necessary in entity alignment? An approach with high performance, scalability and robustness[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1263-1273.
[21] GAO Y J, LIU X Z, WU J Y, et al. ClusterEA: scalable entity alignment with stochastic training and normalized mini-batch similarities[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 421-431.
[22] LAMPLE G, CONNEAU A, RANNZATO M A, et al.Word translation without parallel data[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
[23] ZHAO X, ZENG W X, TANG J Y, et al. Toward entity aligment in the open world: an unsupervised approach with confidence modeling[J]. Data Science and Engineering, 2022, 7(1): 16-29.
[24] CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 2292-2300.
[25] ZHANG R, TRISEDYA B D, LI M, et al. A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning[J]. The VLDB Journal, 2022, 31(5): 1143-1168.
[26] 张富, 杨琳艳, 李健伟, 等. 实体对齐研究综述[J]. 计算机学报, 2022, 45(6): 1195-1225.
ZHANG F, YANG L Y, LI J W, et al. An overview of entity alignment methods[J]. Chinese Journal of Computers, 2022, 45(6): 1195-1225.
[27] 马赫, 王海荣, 周北京, 等. 基于表示学习的实体对齐方法综述[J]. 计算机工程与科学, 2023, 45(3): 554-564.
MA H, WANG H R, ZHOU B J, et al. Overview of the entity alignment methods based representation learning[J]. Computer Engineering & Science, 2023, 45(3): 554-564.
[28] MAO X, WANG W T, WU Y B, et al. From alignment to assignment: frustratingly simple unsupervised entity alignment [EB/OL]. [2023-08-14]. https://arxiv.org/abs/2109.02363.
[29] WANG C X, HUANG Z H, WAN Y, et al. FuAlign: cross-lingual entity alignment via multi-view representation learning of fused knowledge graphs[J]. Information Fusion, 2023, 89: 41-52.
[30] CHEN M H, TIAN Y T, YANG M H,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[EB/OL]. [2023-08-14]. https://arxiv.org/abs/1611.03954.
[31] ZHU Y, LIU H, WU Z, et al. Relation-aware neighborhood matching model for entity alignment[C]//Proceedings of the 35th Conference on Association for the Advancement of Artificial Intelligence. Menlo Park: AAAI, 2021: 4749-4756.
[32] MAO X, MA M R, HAO Y, et al. An effective and efficient entity alignment decoding algorithm via third-order tensor isomorphism[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 5888-5898.
[33] CHEN L Y, LI Z, WANG Y J, et al. MMEA: entity alignment for multi-modal knowledge graph[C]//Proceedings of the 13th International Conference on Knowledge Science, Engineering and Management, Hangzhou, Aug 28-30, 2020: 134-147. |