Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (12): 3100-3125.DOI: 10.3778/j.issn.1673-9418.2404041
• Frontiers·Surveys • Previous Articles Next Articles
WU Peichen, YUAN Lining, GUO Fang, LIU Zhao
Online:
2024-12-01
Published:
2024-11-29
吴沛宸,袁立宁,郭放,刘钊
WU Peichen, YUAN Lining, GUO Fang, LIU Zhao. Video Anomaly Detection Methods: a Survey[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3100-3125.
吴沛宸, 袁立宁, 郭放, 刘钊. 视频异常行为检测综述[J]. 计算机科学与探索, 2024, 18(12): 3100-3125.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2404041
[1] YAO H, HU X. A survey of video violence detection[J]. Cyber-Physical Systems, 2023, 9(1): 1-24. [2] ROSHAN S, SRIVATHSAN G, DEEPAK K, et al. Violence detection in automated video surveillance: recent trends and comparative studies[M]//The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems. Amsterdam: Elsevier, 2020: 157-171. [3] RAMACHANDRA B, JONES M J, VATSAVAI R R. A survey of single-scene video anomaly detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(5): 2293-2312. [4] VERMA K K, SINGH B M, DIXIT A. A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system[J]. International Journal of Information Technology, 2022, 14(1): 397-410. [5] HU C, CHEN Y, HU L, et al. A novel random forests based class incremental learning method for activity recognition[J]. Pattern Recognition, 2018, 78: 277-290. [6] XIAO Q, SONG R. Action recognition based on hierar- chical dynamic Bayesian network[J]. Multimedia Tools and Applications, 2018, 77(6): 6955-6968. [7] PICHLEAP S, TING X, YOHANNES A, et al. Activity recognition for incomplete spinal cord injury subjects using hidden Markov models[J]. IEEE Sensors Journal, 2018, 18(15): 6369-6374. [8] ABIDINE B M, FERGANI L, FERGANI B, et al. The joint use of sequence features combination and modified weighted SVM for improving daily activity recognition[J]. Pattern Analysis and Applications, 2018, 21(1): 119-138. [9] 孙晓虎, 余阿祥, 申栩林, 等. 混合注意力机制的异常行为识别[J]. 计算机工程与应用, 2023, 59(5): 140-147. SUN X H, YU A X, SHEN X L, et al. Abnormal behavior recognition based on hybrid attention mechanism[J]. Computer Engineering and Applications, 2023, 59(5): 140-147. [10] LIU Y, LIU J, ZHAO M, et al. Learning appearance-motion normality for video anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6. [11] LI D, NIE X, LI X, et al. Context-related video anomaly detection via generative adversarial network[J]. Pattern Recognition Letters, 2022, 156: 183-189. [12] LEE J, NAM W J, LEE S W. Multi-contextual predictions with vision transformer for video anomaly detection[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 1012-1018. [13] ALAFIF T, HADI A, ALLAHYANI M, et al. Hybrid classifiers for spatio-temporal abnormal behavior detection, tracking, and recognition in massive Hajj crowds[J]. Elect-ronics, 2023, 12(5): 1165. [14] AL-LAHHAM A, TASTAN N, ZAHEER Z, et al. A coarse-to-fine pseudo-labeling (C2FPL) framework for unsupervised video anomaly detection[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2310.17650. [15] WONG S C, STAMATESCU V, GATT A, et al. Track everything: limiting prior knowledge in online multi-object recognition[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4669-4683. [16] KONG X, MA K, HOU S, et al. Human interactive behavior: a bibliographic review[J]. IEEE Access, 2018, 7: 4611-4628. [17] MOHAMMADI B, FATHY M, SABOKROU M. Image/video deep anomaly detection: a survey[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2103.01739. [18] XU D, YAN Y, RICCI E, et al. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 2017, 156: 117-127. [19] SABOKROU M, FATHY M, HOSEINI M, et al. Realtime anomaly detection and localization in crowded scenes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 56-62. [20] SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes[J]. Computer Vision and Image Understanding, 2018, 172: 88-97. [21] KIM J, JEONG K, CHOI H, et al. GAN-based anomaly detection in imbalance problems[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 128-145. [22] TANG Y, ZHAO L, ZHANG S, et al. Integrating prediction and reconstruction for anomaly detection[J]. Pattern Recognition Letters, 2020, 129: 123-130. [23] ALHOTHALI A, BALABID A, ALHARTHI R, et al. Anomalous event detection and localization in dense crowd scenes[J]. Multimedia Tools and Applications, 2023, 82(10): 15673-15694. [24] LIU Y, YANG D, FANG G, et al. Stochastic video normality network for abnormal event detection in surveillance videos[J]. Knowledge-Based Systems, 2023, 280: 110986. [25] YAN C, ZHANG S, LIU Y, et al. Feature prediction diffusion model for video anomaly detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 5527-5537. [26] SATTARZADEH S, SUDHAKAR M, PLATANIOTIS K N. SVEA: a small-scale benchmark for validating the usability of posthoc explainable AI solutions in image and signal recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4158-4167. [27] ZHAN C, HU H, WANG Z, et al. Unmanned aircraft system aided adaptive video streaming: a joint optimization approach[J]. IEEE Transactions on Multimedia, 2019, 22(3): 795-807. [28] ZHANG Z, MA S, YANG Z, et al. Robust semisupervised federated learning for images automatic recognition in Internet of drones[J]. IEEE Internet of Things Journal, 2022, 10(7): 5733-5746. [29] SUAREZ J J P, NAVAL JR P C. A survey on deep learning techniques for video anomaly detection[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2009.14146. [30] CAI Y, LIU J, GUO Y, et al. Video anomaly detection with multi-scale feature and temporal information fusion[J]. Neurocomputing, 2021, 423: 264-273. [31] FENG X, SONG D, CHEN Y, et al. Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5546-5554. [32] SABOKROU M, KHALOOEI M, FATHY M, et al. Adv- ersarially learned one-class classifier for novelty detection [C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3379-3388. [33] IONESCU R T, SMEUREANU S, POPESCU M, et al. Detecting abnormal events in video using narrowed normality clusters[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2019: 1951-1960. [34] IONESCU R T, KHAN F S, GEORGESCU M I, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7842-7851. [35] RAMACHANDRA B, JONES M, VATSAVAI R. Learning a distance function with a siamese network to localize anomalies in videos[C]//Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2598-2607. [36] 龚苏明, 陈莹. 时空特征金字塔模块下的视频行为识别[J]. 计算机科学与探索, 2022, 16(9): 2061-2067. GONG S M, CHEN Y. Video action recognition based on spatio-temporal feature pyramid module[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2061-2067. [37] ?ENG?NüL E, SAMET R, ABU AL-HAIJA Q, et al. An analysis of artificial intelligence techniques in surveil- lance video anomaly detection: a comprehensive survey[J]. Applied Sciences, 2023, 13(8): 4956. [38] RAMACHANDRA B, JONES M. Street scene: a new data- set and evaluation protocol for video anomaly detection[C]//Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2569-2578. [39] GARCíA-GONZáLEZ J, MOLINA-CABELLO M A, LUQUE-BAENA R M, et al. Deep autoencoder architectures for foreground object detection in video sequences based on probabilistic mixture models[C]//Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 3199-3203. [40] SHARMA M K, SHEET D, BISWAS P K. Spatiotemporal deep networks for detecting abnormality in videos[J]. Multimedia Tools and Applications, 2020, 79(15): 11237-11268. [41] KUPPUSAMY P, BHARATHI V C. Human abnormal be- havior detection using CNNs in crowded and uncrowded surveillance-a survey[J]. Measurement: Sensors, 2022, 24: 100510. [42] KIM J, GRAUMAN K. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2009: 2921-2928. [43] WU S, MOORE B E, SHAH M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2010: 2054-2060. [44] BARBALAU A, IONESCU R T, GEORGESCU M I, et al. SSMTL++: revisiting self-supervised multi-task learning for video anomaly detection[J]. Computer Vision and Image Understanding, 2023, 229: 103656. [45] HIRSCHORN O, AVIDAN S. Normalizing flows for human pose anomaly detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 13545-13554. [46] FLABOREA A, COLLORONE L, DI MELENDUGNO G M D A, et al. Multimodal motion conditioned diffusion model for skeleton-based video anomaly detection[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 10318-10329. [47] 肖进胜, 郭浩文, 谢红刚, 等. 监控视频异常行为检测的概率记忆自编码网络[J]. 软件学报, 2023, 34(9): 4362-4377. XIAO J S, GUO H W, XIE H G, et al. Probabilistic memory auto-encoding network for abnormal behavior detection in surveillance videos[J]. Journal of Software, 2023, 34(9): 4362-4377. [48] GEPPERTH A. A new perspective on probabilistic image modeling[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-10. [49] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 6840-6851. [50] 肖进胜, 申梦瑶, 江明俊, 等. 融合包注意力机制的监控视频异常行为检测[J]. 自动化学报, 2022, 48(12): 2951-2959. XIAO J S, SHEN M Y, JIANG M J, et al. Abnormal behavior detection algorithm with video-bag attention mechanism in surveillance video[J]. Acta Automatica Sinica, 2022, 48(12): 2951-2959. [51] LIU Y, LIU J, LIN J, et al. Appearance-motion united auto encoder framework for video anomaly detection[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2498-2502. [52] LIU W, CHANG H, MA B, et al. Diversity-measurable anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12147-12156. [53] HUANG X, ZHAO C, WU Z. Updated version: a video anomaly detection framework based on appearance-motion semantics representation consistency[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2303.05109. [54] TRAN H T M, HOGG D. Anomaly detection using a convolutional winner-take-all autoencoder[C]//Proceedings of the British Machine Vision Conference 2017, London, Sep 4-7, 2017. [55] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714. [56] 孙敬波, 季节. 视频监控下利用记忆力增强自编码的行人异常行为检测[J]. 红外与激光工程, 2022, 51(6): 20210680. SUN J B, JI J. Memory-augmented deep autoencoder model for pedestrian abnormal behavior detection in video surveillance[J]. Infrared and Laser Engineering, 2022, 51(6): 20210680. [57] 刘成明, 薛然, 石磊, 等. 融合门控自注意力机制的生成 对抗网络视频异常检测[J]. 中国图象图形学报, 2022, 27(11): 3210-3221. LIU C M, XUE R, SHI L, et al. The gating self-attention mechanism and GAN integrated video anomaly detection[J]. Journal of Image and Graphics, 2022, 27(11): 3210-3221. [58] CHEN D, YUE L, CHANG X, et al. NM-GAN: noise-modulated generative adversarial network for video anomaly detection[J]. Pattern Recognition, 2021, 116: 107969. [59] ZHANG Q, FENG G, WU H. Surveillance video anomaly detection via non-local U-Net frame prediction[J]. Multimedia Tools and Applications, 2022, 81(19): 27073-27088. [60] HUANG C, WU Z, WEN J, et al. Abnormal event detection using deep contrastive learning for intelligent video surveillance system[J]. IEEE Transactions on Industrial Informatics, 2021, 18(8): 5171-5179. [61] SINGH A, JONES M J, LEARNED-MILLER E G. Eval: explainable video anomaly localization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18717-18726. [62] 张红民, 庄旭, 郑敬添, 等. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249. ZHANG H M, ZHUANG X, ZHENG J T, et al. Optimi-zing human abnormal behavior detection method of YOLO network[J]. Computer Engineering and Applications, 2023, 59(7): 242-249. [63] LIU Z, NIE Y, LONG C, et al. A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13588-13597. [64] RISTEA N C, MADAN N, IONESCU R T, et al. Self-supervised predictive convolutional attentive block for anomaly detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13576-13586. [65] NAJI Y, SETKOV A, LOESCH A, et al. Spatio-temporal predictive tasks for abnormal event detection in videos[C]//Proceedings of the 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2022: 1-8. [66] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042. DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042. [67] KUMARI P, BEDI A K, SAINI M. Multimedia datasets for anomaly detection: a survey[EB/OL]. [2024-02-23]. https:// arxiv.org/abs/2112.05410. [68] LIU Y, YANG D, WANG Y, et al. Generalized video anomaly event detection: systematic taxonomy and comparison of deep models[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2302.05087. [69] KUMARI P. Situational anomaly detection in multimedia data under concept drift[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2969-2973. [70] WU P, LIU J, SHI Y, et al. Not only look, but also listen: learning multimodal violence detection under weak supervision[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 322-339. [71] YU J, LIU J, CHENG Y, et al. Modality-aware contrastive instance learning with self-distillation for weakly-supervised audio-visual violence detection[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 6278-6287. [72] WEI D, LIU Y, ZHU X, et al. MSAF: multimodal supervise attention enhanced fusion for video anomaly detection[J]. IEEE Signal Processing Letters, 2022, 29: 2178-2182. [73] SHANG Y, WU X, LIU R. Multimodal violent video recognition based on mutual distillation[C]//Proceedings of the 2022 Chinese Conference on Pattern Recognition and Computer Vision. Cham: Springer, 2022: 623-637. [74] CHEN W, MA K T, YEW Z J, et al. TEVAD: improved video anomaly detection with captions[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5548-5558. [75] PANG W F, HE Q H, HU Y, et al. Violence detection in videos based on fusing visual and audio information[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2260-2264. [76] PU Y, WU X. Audio-guided attention network for weakly supervised violence detection[C]//Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering. Piscataway: IEEE, 2022: 219-223. [77] WEI D L, LIU C G, LIU Y, et al. Look, listen and pay more attention: fusing multi-modal information for video violence detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 1980-1984. [78] HU F, CHEN A, WANG Z, et al. Lightweight attentional feature fusion: a new baseline for text-to-video retrieval [C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 444-461. [79] KUMARI P, BEDI A K, SAINI M. Multimedia datasets for anomaly detection: a review[J]. Multimedia Tools and Applications, 2024, 83(19): 56785-56835. [80] DEMARTY C H, PENET C, SOLEYMANI M, et al. VSD, a public dataset for the detection of violent scenes in movies: design, annotation, analysis and evaluation[J]. Multimedia Tools and Applications, 2015, 74: 7379-7404. [81] AQEL D, AL-ZUBI S, MUGHAID A, et al. Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture[J]. Cluster Computing, 2022, 25(3): 2007-2020. [82] TUDOR IONESCU R, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2895-2903. [83] 邬开俊, 黄涛, 王迪聪, 等. 视频异常检测技术研究进展[J]. 计算机科学与探索, 2022, 16(3): 529-540. WU K J, HUANG T, WANG D C, et al. Research progress of video anomaly detection technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540. [84] LIU Y, LI C L, PóCZOS B. Classifier two sample test for video anomaly detections[C]//British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018: 71. [85] LI T, WANG Z, LIU S, et al. Deep unsupervised anomaly detection[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3636-3645. [86] HU J, YU G, WANG S, et al. Detecting anomalous events from unlabeled videos via temporal masked auto-encoding[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6. [87] PANG G, YAN C, SHEN C, et al. Self-trained deep ord- inal regression for end-to-end video anomaly detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12173-12182. [88] ZAHEER M Z, MAHMOOD A, KHAN M H, et al. Generative cooperative learning for unsupervised video anomaly detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14744-14754. [89] LIN X, CHEN Y, LI G, et al. A causal inference look at unsupervised video anomaly detection[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 1620-1629. [90] HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2111.06377. [91] YUAN H, CAI Z, ZHOU H, et al. Transanomaly: video anomaly detection using video vision transformer[J]. IEEE Access, 2021, 9: 123977-123986. [92] KONG X, LIU X, JEDARI B, et al. Mobile crowd sourcing in smart cities: technologies, applications, and future challenges[J]. IEEE Internet of Things Journal, 2019, 6(5): 8095-8113. [93] ADAM A, RIVLIN E, SHIMSHONI I, et al. Robust real-time unusual event detection using multiple fixed-location monitors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560. [94] LI W, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(1): 18-32. [95] LU C, SHI J, JIA J. Abnormal event detection at 150 FPS in matlab[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2013: 2720-2727. [96] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection—a new baseline[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 6536-6545. [97] WAN B, JIANG W, FANG Y, et al. Anomaly detection in video sequences: a benchmark and computational model [J]. IET Image Processing, 2021, 15(14): 3454-3465. [98] ACSINTOAE A, FLORESCU A, GEORGESCU M I, et al. Ubnormal: new benchmark for supervised open-set video anomaly detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20143-20153. [99] LU C, SHI J, WANG W, et al. Fast abnormal event detection[J]. International Journal of Computer Vision, 2019, 127: 993-1011. [100] WANG S, MIAO Z. Anomaly detection in crowd scene [C]//Proceedings of the IEEE 10th International Conference on Signal Processing. Piscataway: IEEE, 2010: 1220-1223. [101] SABOKROU M, FAYYAZ M, FATHY M, et al. Deep cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1992-2004. [102] LIU Y, LI S, LIU J, et al. Learning attention augmented spatial-temporal normality for video anomaly detection[C]//Proceedings of the 2021 3rd International Symposium on Smart and Healthy Cities. Piscataway: IEEE, 2021: 137-144. [103] ZHAO M, LIU Y, LIU J, et al. Exploiting spatial-temporal correlations for video anomaly detection[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 1727-1733. [104] DENG H, ZHANG Z, ZOU S, et al. Bi-directional frame interpolation for unsupervised video anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2634-2643. [105] SHI C, SUN C, WU Y, et al. Video anomaly detection via sequentially learning multiple pretext tasks[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 10330-10340. [106] LE V T, KIM Y G. Attention-based residual autoencoder for video anomaly detection[J]. Applied Intelligence, 2023, 53(3): 3240-3254. [107] HAN Z, ZHOU G, HE R, et al. How well does GPT-4V(ision) adapt to distribution shifts? A preliminary investigation[EB/OL]. [2024-02-23]. https://arxiv.org/abs/2312. 07424. [108] HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural network[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 1135-1143. [109] DENG L, LI G, HAN S, et al. Model compression and hardware acceleration for neural networks: a comprehensive survey[J]. Proceedings of the IEEE, 2020, 108(4): 485-532. [110] GOU J, YU B, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129: 1789-1819. [111] NAYAK R, PATI U C, DAS S K. A comprehensive review on deep learning-based methods for video anomaly detection[J]. Image and Vision Computing, 2021, 106: 104078. [112] NGUYEN K T, DINH D T, DO M N, et al. Anomaly detection in traffic surveillance videos with GAN-based future frame prediction[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020: 457-463. [113] REN J, XIA F, LIU Y M, et al. Deep video anomaly detection: opportunities and challenges[C]//Proceedings of the 2021 International Conference on Data Mining. Piscataway: IEEE, 2021: 959-966. |
[1] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[2] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[3] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[4] | YE Qingwen, ZHANG Qiuju. Multi-label Image Recognition Using Channel Pixel Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2109-2117. |
[5] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[6] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[7] | LI Jiancheng, CAO Lu, HE Xiquan, LIAO Junhong. Review of Classification Methods for Lung Nodules in CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1705-1724. |
[8] | HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682. |
[9] | PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[10] | JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437. |
[11] | ZHANG Kaili, WANG Anzhi, XIONG Yawei, LIU Yun. Survey of Transformer-Based Single Image Dehazing Methods [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1182-1196. |
[12] | ZENG Fanzhi, FENG Wenjie, ZHOU Yan. Survey on Natural Scene Text Recognition Methods of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1160-1181. |
[13] | YU Fan, ZHANG Jing. Dense Pedestrian Detection Based on Shifted Window Attention Multi-scale Equalization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1286-1300. |
[14] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[15] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/