Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (8): 1935-1959.DOI: 10.3778/j.issn.1673-9418.2311117
• Frontiers·Surveys • Previous Articles Next Articles
WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan
Online:
2024-08-01
Published:
2024-07-29
吴涛,曹新汶,先兴平,袁霖,张殊,崔灿一星,田侃
WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959.
吴涛, 曹新汶, 先兴平, 袁霖, 张殊, 崔灿一星, 田侃. 图神经网络对抗攻击与鲁棒性评测前沿进展[J]. 计算机科学与探索, 2024, 18(8): 1935-1959.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2311117
[1] ZüGNER D, AKBARNEJAD A, GüNNEMANN S. Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 2847-2856. [2] CHEN J Y, CHEN Y X, ZHENG H B, et al. MGA: momentum gradient attack on network[J]. IEEE Transactions on Computational Social Systems, 2020, 8(1): 99-109. [3] XU K D, CHEN H G, LIU S J, et al. Topology attack and defense for graph neural networks: an optimization perspective[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Freiburg: IJCAI, 2019: 3961-3967. [4] WANG J H, LUO M N, SUYA F, et al. Scalable attack on graph data by injecting vicious nodes[J]. Data Mining and Knowledge Discovery, 2020, 34: 1363-1389. [5] ZüGNER D, GüNNEMANN S. Adversarial attacks on graph neural networks via meta learning[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019. New York: ICML, 2019. [6] ZHAO M C, AN B, YU Y D, et al. Data poisoning attacks on multi-task relationship learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI, 2018: 2628-2635. [7] WU H J, WANG C, TYSHETSKIY Y, et al. Adversarial examples for graph data: deep insights into attack and defense[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Freiburg: IJCAI, 2019: 4816-4823. [9] MA J Q, DING S R, MEI Q Z. Towards more practical adversarial attacks on graph neural networks[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouve, Dec 6-12, 2020. New York: Curran Associates, 2020: 4756-4766. [9] BASTANI O, IOANNOU Y, LAMPROPOULOS L, et al. Measuring neural net robustness with constraints[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. New York: Curran Associates, 2016: 2621-2629. [10] MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 2574-2582. [11] ZHOU M, PATEL V M. Enhancing adversarial robustness for deep metric learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 15325-15334. [12] XU H, MA Y, LIU H C, et al. Adversarial attacks and defenses in images, graphs and text: a review[J]. International Journal of Automation and Computing, 2020, 17: 151-178. [13] 李自拓, 孙建彬, 杨克巍, 等. 面向图像分类的对抗鲁棒性评估综述[J]. 计算机研究与发展, 2022, 59(10): 2164-2189. LI Z T, SUN J B, YANG K W, et al. A review of adversarial robustness evaluation for image classification[J]. Journal of Computer Research and Development, 2022, 59(10): 2164-2189. [14] CHEN L, LI J T, PENG J Y, et al. A survey of adversarial learning on graphs[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2003.05730. [15] 陈晋音, 张敦杰, 黄国瀚, 等. 面向图神经网络的对抗攻击与防御综述[J]. 网络与信息安全学报, 2021, 7(3): 1-28. CHEN J Y, ZHANG D J, HUANG G H, et al. Adversarial attack and defense on graph neural networks: a survey[J]. Chinese Journal of Network and Information Security, 2021, 7(3): 1-28. [16] JIN W, LI Y X, XU H, et al. Adversarial attacks and defenses on graphs[J]. ACM SIGKDD Explorations Newsletter, 2021, 22(2): 19-34. [17] 任一支, 李泽龙, 袁理锋, 等. 图深度学习攻击模型综述[J]. 信息安全学报, 2022, 7(1): 66-83. REN Y Z, LI Z L, YUAN L F, et al. Attack deep learning on graphs: a survey[J]. Journal of Cyber Security, 2022, 7(1): 66-83. [18] SUN L C, DOU Y T, YANG C, et al. Adversarial attack and defense on graph data: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(8): 7693-7711. [19] DAI E Y, ZHAO T X, ZHU H S, et al. A comprehensive survey on trustworthy graph neural networks: privacy, robustness, fairness, and explainability[EB/OL]. [2023-10-20]. https:// arxiv.org/abs/2204.08570. [20] 先兴平, 吴涛, 乔少杰, 等. 图学习隐私与安全问题研究综述[J]. 计算机学报, 2023, 46(6): 1184-1212. XIAN X P, WU T, QIAO S J, et al. Towards privacy and security of graph learning: a survey[J]. Chinese Journal of Computer, 2023, 46(6): 1184-1212. [21] CHEN J Y, WU Y Y, XU X H, et al. Fast gradient attack on network embedding[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1809.02797. [22] WANG X Y, CHENG M H, EATON J, et al. Attack graph convolutional networks by adding fake nodes[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1810.10751. [23] SUN M J, TANG J, LI H C, et al. Data poisoning attack against unsupervised node embedding methods[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1810.12881. [24] WANIEK M, ZHOU K, VOROBEYCHIK Y, et al. Attack tolerance of link prediction algorithms: how to hide your relations in a social network[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1809.00152. [25] WANG B H, GONG N Z. Attacking graph-based classification via manipulating the graph structure[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, Nov 11-15, 2019. New York: ACM, 2019: 2023-2040. [26] BOJCHEVSKI A, GüNNEMANN S. Adversarial attacks on node embeddings via graph poisoning[C]//Proceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 695-704. [27] ZHANG H, ZHENG T, GAO J, et al. Data poisoning attack against knowledge graph embedding[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Freiburg: IJCAI, 2019: 4853-4859. [28] LIU X Q, SI S, ZHU X J, et al. A unified framework for data poisoning attack to graph-based semi-supervised learning[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. New York: Curran Associates, 2019: 9780-9790. [29] BOSE A J, CIANFLONE A, HAMILTON W L. Generalizable adversarial attacks using generative models[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1905.10864. [30] SUN Y W, WANG S H, TANG X F, et al. Node injection attacks on graphs via reinforcement learning[EB/OL]. [2023-10-20]. https://arxiv.org/abs/1909.06543. [31] ZHOU K, MICHALAK T P, WANIEK M, et al. Attacking similarity-based link prediction in social networks[C]//Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, Montreal, May 13-17, 2019. Richland: International Foundation for Autonomous Agents and Multiagent Systems, 2019: 305-313. [32] TAKAHASHI T. Indirect adversarial attacks via poisoning neighbors for graph convolutional networks[C]//Proceedings of the 2019 IEEE International Conference on Big Data, Los Angeles, Dec 9-12, 2019. Piscataway: IEEE, 2019: 1395-1400. [33] LI J, ZHANG H L, HAN Z C, et al. Adversarial attack on community detection by hiding individuals[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 917-927. [34] LIN X X, ZHOU C, YANG H, et al. Exploratory adversarial attacks on graph neural networks[C]//Proceedings of the 2020 IEEE International Conference on Data Mining, Sorrento, Nov 17-20, 2020. Piscataway: IEEE, 2020: 1136-1141. [35] LI J T, XIE T, CHEN L, et al. Adversarial attack on large scale graph[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 82-95. [36] BHARDWAJ P, KELLEHER J, COSTABELLO L, et al. Poisoning knowledge graph embeddings via relation inference patterns[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. New York: Curran Associates, 2021: 1875-1888. [37] CHEN J T, ZHANG J, CHEN Z, et al. Time-aware gradient attack on dynamic network link prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 2091-2102. [38] FANG J Y, WEN H X, WU J J, et al. GANI: global attacks on graph neural networks via imperceptible node injections[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2210.12598. [39] NGUYEN T T, QUACH K N D, NGUYEN T T, et al. Poisoning GNN-based recommender systems with generative surrogate-based attacks[J]. ACM Transactions on Information Systems, 2023, 41(3): 1-24. [40] LIU Z H, WANG G, LUO Y, et al. What does the gradient tell when attacking the graph structure[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2208.12815. [41] JIANG C, HE Y, CHAPMAN R, et al. Camouflaged poisoning attack on graph neural networks[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval, Lisbon, Jun 27-30, 2022. New York: ACM, 2022: 451-461. [42] LIU Z H, LUO Y, ZANG Z L, et al. Surrogate representation learning with isometric mapping for gray-box graph adversarial attacks[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Tempe, Feb 21-25, 2022. New York: ACM, 2022: 591-598. [43] ZHANG S X, CHEN H X, SUN X G, et al. Unsupervised graph poisoning attack via contrastive loss back-propagation[C]//Proceedings of the ACM Web Conference, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 1322-1330. [44] LIU Z H, LUO Y, WU L R, et al. Towards reasonable budget allocation in untargeted graph structure attacks via gradient debias[C]//Advances in Neural Information Processing Systems 35, 2022: 27966-27977. [45] SHARMA A K, KUKREJA R, KHARBANDA M, et al. Node injection for class-specific network poisoning[J]. Neural Networks, 2023, 166: 236-247. [46] ZANG X, CHEN J, YUAN B. GUAP: graph universal attack through adversarial patching[EB/OL]. [2023-10-20]. https:// arxiv.org/abs/2301.01731. [47] HU C, YU R S, ZENG B Q, et al. HyperAttack: multi-gradient-guided white-box adversarial structure attack of hypergraph neural networks[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2302.12407. [48] DAI H J, LI H, TIAN T H, et al. Adversarial attack on graph structured data[C]//Proceedings of the 2018 International Conference on Machine Learning, Stockholm, Jul 10-15, 2018. New York: ICML, 2018: 1115-1124. [49] MA Y, WANG S H, WU L F, et al. Attacking graph convolutional networks via rewiring[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1161-1169. [50] WANG B, ZHOU T, LIN M, et al. Evasion attacks to graph neural networks via influence function[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2009.00203. [51] CHANG H, RONG Y, XU T Y, et al. A restricted black-box adversarial framework towards attacking graph embedding models[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2021. Menlo Park: AAAI, 2021: 3389-3396. [52] ZANG X, XIE Y, CHEN J, et al. Graph universal adversarial attacks: a few bad actors ruin graph learning models[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, Aug 19-27, 2021. New York: Curran Associates, 2021: 3328-3334. [53] TANG H T, MA G X, CHEN Y R, et al. Adversarial attack on hierarchical graph pooling neural networks[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2005.11560. [54] CHEN J Y, LIN X, SHI Z Q, et al. Link prediction adversarial attack via iterative gradient attack[J]. IEEE Transactions on Computational Social Systems, 2020, 7(4): 1081-1094. [55] TAO S C, CAO Q, SHEN H W, et al. Single node injection attack against graph neural networks[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 1794-1803. [56] ZOU X, ZHENG Q K, DONG Y X, et al. TDGIA: effective injection attacks on graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2021. New York: ACM, 2021: 2461-2471. [57] ZHANG H, WU B, YANG X W, et al. Projective ranking: a transferable evasion attack method on graph neural networks[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queens-land, Nov 1-5, 2021. New York: ACM, 2021: 3617-3621. [58] WAN X C, KENLAY H, RU B X, et al. Adversarial attacks on graph classification via Bayesian optimisation[C]//Advances in Neural Information Processing Systems 34, 2021: 6983-6996. [59] MU J M, WANG B H, LI Q, et al. A hard label black-box adversarial attack against graph neural networks[C]//Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Nov 15-19, 2021. New York: ACM, 2021: 108-125. [60] WANG Z Y, HAO Z K, WANG Z Q, et al. Cluster attack: query-based adversarial attacks on graphs with graph-dependent priors[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2021. Freiburg: IJCAI, 2021: 768-775. [61] FINKELSHTEIN B, BASKIN C, ZHELTONOZHSKII E, et al. Single-node attacks for fooling graph neural networks[J]. Neurocomputing, 2022, 513: 1-12. [62] CHEN J Y, HUANG G H, ZHENG H B, et al. Graph-fraudster: adversarial attacks on graph neural network-based vertical federated learning[J]. IEEE Transactions on Computational Social Systems, 2022, 10(2): 492-506. [63] CHEN Y Q, YANG H, ZHANG Y G, et al. Understanding and improving graph injection attack by promoting unnoticeability[EB/OL]. [2023-10-20]. https://arxiv.org/abs/2202.08057. [64] WANG B H, PANG M, DONG Y. Turning strengths into weaknesses: a certified robustness inspired attack framework against graph neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Jun 18-22, 2023. Piscataway: IEEE, 2023: 16394-16403. [65] SHARMA K, TRIVEDI R, SRIDHAR R, et al. Temporal dynamics-aware adversarial attacks on discrete-time dynamic graph models[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, Aug 6-10, 2023. New York: ACM, 2023: 2023-2035. [66] JU M X, FAN Y J, ZHANG C X, et al. Let graph be the go board: gradient-free node injection attack for graph neural networks via reinforcement learning[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2023. Menlo Park: AAAI, 2023: 4383-4390. [67] XI Z H, PANG R, JI S L, et al. Graph backdoor[C]//Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Aug 11-13, 2021: 1523-1540. [68] ZHANG Z X, JIA J Y, WANG B H, et al. Backdoor attacks to graph neural networks[C]//Proceedings of the 26th ACM Symposium on Access Control Models and Technologies, Spain, Jun 16-18, 2021. New York: ACM, 2021: 15-26. [69] SHENG Y, CHEN R, CAI G Y, et al. Backdoor attack of graph neural networks based on subgraph trigger[C]//Proceedings of the 17th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, Oct 16-18, 2021. Berlin: Springer, 2021: 276-296. [70] XU J, WANG R, KOFFAS S, et al. More is better (mostly): on the backdoor attacks in federated graph neural networks[C]//Proceedings of the 38th Annual Computer Security Applications Conference, Austin, Dec 5-9, 2022. New York: ACM, 2022: 684-698. [71] XU J, PICEK S. Poster: clean-label backdoor attack on graph neural networks[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, Nov 7-11, 2022. New York: ACM, 2022: 3491-3493. [72] YANG S Q, DOAN B G, MONTAGUE P, et al. Transferable graph backdoor attack[C]//Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses, Limassol, Oct 26-28, 2022. New York: ACM, 2022: 321-332. [73] CHEN Y, YE Z L, ZHAO H X, et al. Feature-based graph backdoor attack in the node classification task[J]. International Journal of Intelligent Systems, 2023(1): 5418398. [74] ZHENG H B, XIONG H Y, CHEN J Y, et al. Motif-backdoor: rethinking the backdoor attack on graph neural networks via motifs[J]. IEEE Transactions on Computational Social Systems, 2023, 11(2): 2479-2493. [75] DAI E Y, LIN M H, ZHANG X, et al. Unnoticeable backdoor attacks on graph neural networks[C]//Proceedings of the 2023 ACM Web Conference, Austin, Apr 30-May 4, 2023. New York: ACM, 2023: 2263-2273. [76] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-10-20].https://arxiv.org/abs/1609.02907. [77] WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. New York: Curran Associate, 2019: 6861-6871. [78] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018. Washington: ICLR, 2018: 2920-2931. [79] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. New York: Curran Associate, 2017, 30. [80] ZHU D Y, ZHANG Z W, CUI P, et al. Robust graph convolutional networks against adversarial attacks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1399-1407. [81] LUO D S, CHENG W, YU W C, et al. Learning to drop: robust graph neural network via topological denoising[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Israel, Mar 8-12, 2021. New York: ACM, 2021: 779-787. [82] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [83] LING X, JI S L, ZOU J X, et al. DEEPSEC: a uniform platform for security analysis of deep learning model[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 20-22, 2019. New York: Curran Associates, 2019: 673-690. [84] WONG E, SCHMIDT F, KOLTER Z. Wasserstein adversarial examples via projected sinkhorn iterations[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. New York: Curran Associates, 2019: 6808-6817. [85] YU C J, HAN B, SHEN L, et al. Understanding robust overfitting of adversarial training and beyond[C]//Proceedings of the 39th International Conference on Machine Learning, Baltimore, Jul 17-23, 2022: 25595-25610. [86] JIN H B, CHEN J Y, ZHENG H B, et al. ROBY: evaluating the adversarial robustness of a deep model by its decision boundaries[J]. Information Sciences, 2022, 587: 97-122. [87] 陈思宏, 沈浩靖, 王冉, 等. 预测不确定性与对抗鲁棒性的关系研究[J]. 软件学报, 2022, 33(2): 524-538. CHEN S H, SHEN H J, WANG R, et al. Relationship between prediction uncertainty and adversarial robustness[J]. Journal of Software, 2022, 33(2): 524-538. [88] WENG T W, ZHANG H, CHEN P Y, et al. Evaluating the robustness of neural networks: an extreme value theory approach[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3. Washington: ICLR, 2018: 1-18. [89] JIN H W, SHI Z, PERURI V J S A, et al. Certified robustness of graph convolution networks for graph classification under topological attacks[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Dec 6-12, 2020. New York: Curran Associates, 2020: 8463-8474. [90] XU J R, CHEN J R, YOU S Q, et al. Robustness of deep learning models on graphs: a survey[J]. AI Open, 2021, 2: 69-78. [91] MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163. [92] GILES C L, BOLLACKER K D, LAWRENCE S. CiteSeer: an automatic citation indexing system[C]//Proceedings of the 3rd ACM Conference on Digital Libraries, Pittsburgh, Jun 23-26, 1998. New York: ACM, 1998: 89-98. [93] MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163. [94] LIN L, BLASER E, WANG H N. Graph structural attack by perturbing spectral distance[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York: ACM, 2022: 989-998. [95] JU M X, FAN Y J, YE Y F, et al. Black-box node injection attack for graph neural networks[EB/OL]. [2023-10-20]. https:// arxiv.org/abs/2202.09389. [96] SUN Y W, WANG S H, HSIEH T Y, et al. MEGAN: a generative adversarial network for multi-view network embedding[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019, Menlo Park: AAAI, 2019: 3527-3533. |
[1] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
[2] | WEN Wen, DENG Fengying, HAO Zhifeng, CAI Ruichu, LIANG Fangyu. Recommendation Method for Time-Sequence Point of Interest via Spatio-Temporal Vicinity Perception [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878. |
[3] | LIU Yuan, DONG Yongquan, CHEN Cheng, JIA Rui, YIN Chan. Graph Neural Network Integrating Hot Spots and Long and Short-Term Interests for Course Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. |
[4] | ZHAI Wenshuo, ZHAO Xiang, CHEN Dong. Source Localization of Network Information Propagation via Invertible Graph Diffusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1348-1356. |
[5] | QIAN Zhongsheng, ZHANG Ding, LI Duanming, WANG Yahui, YAO Changsen, YU Qingyuan. Group Recommendation Model Based on User Common Intention and Social Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1368-1382. |
[6] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
[7] | WU Wenzheng, LU Xianling. Session Recommendation Algorithm Combining Item Transition Relations and Time-Order Information [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 768-779. |
[8] | JU Chengcheng, ZHU Yi. Knowledge Concept Recommendation Model for MOOCs with Local Subgraph Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 189-204. |
[9] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
[10] | CHEN Na, HUANG Jincheng, LI Ping. Graph Neural Network Defense Combined with Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1949-1960. |
[11] | YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao. Advances in Knowledge Graph Embedding Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813. |
[12] | WU Jinchen, YANG Xingyao, YU Jiong, LI Ziyang, HUANG Shanhang, SUN Xinjie. Sequence Recommendation with Dual Channel Heterogeneous Graph Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1473-1486. |
[13] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[14] | MA Li, YAO Weifan. Link Prediction Method Combining Relational Path and Directed Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 478-488. |
[15] | XU Xinran, WANG Tengyu, LU Cai. Research Progress of Graph Neural Network in Knowledge Graph Construction and Application [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2278-2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/