[1] BEISHENALIEVA A, YOO S J. Multiobjective 3-D UAV movement planning in wireless sensor networks using bioinspired swarm intelligence[J]. IEEE Internet of Things Journal, 2023, 10(9): 8096-8110.
[2] WEI Z, ZHU M, ZHANG N, et al. UAV-assisted data collection for Internet of things: a survey[J]. IEEE Internet of Things Journal, 2022, 9(17): 15460-15483.
[3] 张薇, 何若俊. 面向物联网数据收集的无人机自主路径规划[J/OL]. 航空学报 (2023-11-17) [2024-02-14]. https://link.cnki.net/urlid/11.1929.V.20231116.1509.008.
ZHANG W, HE R J. Autonomous trajectory design for IoT data collection by UAV[J/OL]. Acta Aeronautica et Astronautica Sinica (2023-11-17) [2024-02-14]. https://link.cnki.net/urlid/11.1929.V.20231116.1509.008.
[4] 张庭溢, 汪弘健. 路灯人影和离家出走改进的黑猩猩优化算法[J]. 计算机科学与探索, 2024, 18(6): 1491-1512.
ZHANG T Y, WANG H J. Street lamp shadow imaging and running away from home strategy for improved chimpanzee optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1491-1512.
[5] 付澍, 杨祥月, 张海君, 等. 物联网数据收集中无人机路径智能规划[J]. 通信学报, 2021, 42(2): 124-133.
FU S, YANG X Y, ZHANG H J, et al. UAV path intelligent planning in IoT data collection[J]. Journal on Communications, 2021, 42(2): 124-133.
[6] LV C, REN Y, LI X, et al. Unmanned aerial vehicle-assisted sparse sensing in wireless sensor networks[J]. IEEE Wireless Communications Letters, 2023, 12(6): 977-981.
[7] LUO C, SATPUTE M N, LI D, et al. Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs[J]. IEEE/ACM Transactions on Networking, 2021, 29(1): 162-175.
[8] MILAROKOSTAS C, TSOLKAS D, PASSAS N I, et al. A comprehensive study on LPWANs with a focus on the potential of LoRa/LoRaWAN systems[J]. IEEE Communications Surveys and Tutorials, 2023, 25(1): 825-867.
[9] FAIGL J. Data collection path planning with spatially correlated measurements using growing self-organizing array[J]. Applied Soft Computing, 2019, 75: 130-147.
[10] FAIGL J, VÁŇA P, PĚNIČKA R. Multi-vehicle close enough orienteering problem with bézier curves for multi-rotor aerial vehicles[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 3039-3044.
[11] GUNAWAN A, LAU H C, VANSTEENWEGEN P. Orienteering problem: a survey of recent variants, solution approa-ches and applications[J]. European Journal of Operational Research, 2016, 255(2): 315-332.
[12] VANSTEENWEGEN P, SOUFFRIAU W, OUDHEUSDEN D V. The orienteering problem: a survey[J]. European Journal of Operational Research, 2011, 209(1): 1-10.
[13] FAIGL J, PĚNIČKA R, BEST G. Self-organizing map-based solution for the orienteering problem with neighborhoods[C]//Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2016: 1315-1321.
[14] FAIGL J. GSOA: growing self-organizing array-unsupervised learning for the close-enough traveling salesman problem and other routing problems[J]. Neurocomputing, 2018, 312: 120-134.
[15] PĚNIČKA R, FAIGL J, VANA P, et al. Dubins orienteering problem with neighborhoods[C]//Proceedings of the 2017 International Conference on Unmanned Aircraft Systems.Piscataway: IEEE, 2017: 1555-1562.
[16] PĚNIČKA R, FAIGL J, SASKA M. Variable neighborhood search for the set orienteering problem and its application to other orienteering problem variants[J]. European Journal of Operational Research, 2019, 276(3): 816-825.
[17] PĚNIČKA R, FAIGL J, SASKA M, et al. Data collection planning with non-zero sensing distance for a budget and curvature constrained unmanned aerial vehicle[J]. Autonomous Robots, 2019, 43(8): 1937-1956.
[18] FAIGL J. Unsupervised learning-based solution of the close enough dubins orienteering problem[J]. Neural Computing & Applications, 2020, 32(24): 18193-18211.
[19] ŠTEFANÍKOVÁ P, VÁŇA P, FAIGL J. Greedy randomized adaptive search procedure for close enough orienteering problem[C]//Proceedings of the 35th ACM/SIGAPP Symposium on Applied Computing. New York:ACM, 2020: 808-814.
[20] DECKEROVÁ J, FAIGL J. Hopfield neural network in solution of the close enough orienteering problem[C]//Proceedings of the 20th Conference Information Technologies-Applications and Theory, Oravská Lesná, Sep 18-22, 2020: 169-175.
[21] QIAN Q, WANG Y, BOYLE D. On solving close enough orienteering problem with overlapped neighborhoods[EB/OL]. (2023-10-06) [2024-02-14]. https://doi.org/10.48550/arXiv.2310.04257.
[22] PAN M, CHEN C, YIN X, et al. UAV-aided emergency environmental monitoring in infrastructure-less areas: LoRa mesh networking approach[J]. IEEE Internet of Things Journal, 2022, 9(4): 2918-2932. |