Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (4): 835-853.DOI: 10.3778/j.issn.1673-9418.2403071
• Frontiers·Surveys • Previous Articles Next Articles
DUAN Yuchen, FANG Zhenyu, ZHENG Jiangbin
Online:
2025-04-01
Published:
2025-03-28
段宇晨,方振宇,郑江滨
DUAN Yuchen, FANG Zhenyu, ZHENG Jiangbin. Review of Neural Network Lightweight[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 835-853.
段宇晨, 方振宇, 郑江滨. 神经网络轻量化综述[J]. 计算机科学与探索, 2025, 19(4): 835-853.
[1] RADFORD A, NARASIMHAN K. Improving language understanding by generative pre-training[EB/OL]. [2023-11-06]. https://cdn.openai.com/research-covers/language-unsupervised/ language_understanding_paper.pdf. [2] YANG T J, HOWARD A, CHEN B, et al. NetAdapt: platform-aware neural network adaptation for mobile applications[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 289-304. [3] LIANG T L, GLOSSNER J, WANG L, et al. Pruning and quantization for deep neural network acceleration: a survey[J]. Neurocomputing, 2021, 461: 370-403. [4] BHALGAONKAR S A, MUNOT M V, ANUSE A D. Pruning for compression of visual pattern recognition networks: a survey from deep neural networks perspective[M]//Pattern recognition and data analysis with applications. Singapore: Springer, 2022: 675-687. [5] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network Mobile-ViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671. [6] RENDA A, FRANKLE J, CARBIN M, et al. Comparing rewinding and fine-tuning in neural network pruning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2003.02389. [7] GEN? E H, FRAENZ C, SCHLüTER C, et al. Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence[J]. Nature Communications, 2018, 9(1): 1905. [8] LECUN Y, DENKER J S, SOLLA S A. Optimal brain damage[C]//Advances in Neural Information Processing Systems, 1990: 598-605. [9] HASSIBI B, STORK D G. Second order derivatives for network pruning: optimal brain surgeon[C]//Advances in Neural Information Processing Systems 5, 1992: 164-171. [10] MOLCHANOV P, MALLYA A, TYREE S, et al. Importance estimation for neural network pruning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11256-11264. [11] GUO Y W, YAO A B, CHEN Y R, et al. Dynamic network surgery for efficient DNNs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 1387-1395. [12] LIU H, LI Z Y, HALL D, et al. Sophia: a scalable stochastic second-order optimizer for language model pre-training[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2305.14342. [13] LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1608.08710. [14] LUO J H, WU J X, LIN W Y. ThiNet: a filter level pruning method for deep neural network compression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5068-5076. [15] WANG Z, LI C C, WANG X Y. Convolutional neural network pruning with structural redundancy reduction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14913-14922. [16] FANG G F, MA X Y, SONG M L, et al. DepGraph: towards any structural pruning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16091-16101. [17] FRANKLE J, CARBIN M. The lottery ticket hypothesis: finding sparse, trainable neural networks[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1803.03635. [18] LIU Z, SUN M J, ZHOU T H, et al. Rethinking the value of network pruning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1810.05270. [19] GUO S P, WANG Y J, LI Q Q, et al. DMCP: differentiable Markov channel pruning for neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1536-1544. [20] LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2755-2763. [21] FANG G, MA X, WANG X.Structural pruning for diffusion models[EB/OL]. [2023-11-06]. http://arxiv.org/abs/2305.10924. [22] HE Y, XIAO L G. Structured pruning for deep convolutional neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 2900-2919. [23] XIA M Z, ZHONG Z X, CHEN D Q. Structured pruning learns compact and accurate models[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2204.00408. [24] BLALOCK D, ORTIZ J J G, FRANKLE J, et al. What is the state of neural network pruning?[EB/OL]. [2023-11-06]. http://arxiv.org/abs/2003.03033. [25] LI B L, WU B W, SU J, et al. EagleEye: fast sub-net evaluation for efficient neural network pruning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2007.02491. [26] LI Y W, ADAMCZEWSKI K, LI W, et al. Revisiting random channel pruning for neural network compression[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 191-201. [27] BAKER B, GUPTA O, RASKAR R, et al. Accelerating neural architecture search using performance prediction[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1705.10823. [28] LUO R Q, TAN X, WANG R, et al. Accuracy prediction with non-neural model for neural architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2007.04785. [29] LI X, ZHOU Y M, PAN Z, et al. Partial order pruning: for best speed/accuracy trade-off in neural architecture search[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9137-9145. [30] KANG H J. Accelerator-aware pruning for convolutional neural networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 2093-2103. [31] LIU N, MA X L, XU Z Y, et al. AutoCompress: an automatic DNN structured pruning framework for ultra-high compression rates[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4876-4883. [32] MENG F, CHENG H, LI K, et al. Pruning filter in filter[C]//Advances in Neural Information Processing Systems 33, 2020: 17629-17640. [33] CHEN T, ZHANG H, ZHANG Z, et al. Linearity grafting: relaxed neuron pruning helps certifiable robustness[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 3760-3772. [34] MYUNG S, HUH I, JANG W, et al. PAC-Net: a model pruning approach to inductive transfer learning[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 16240-16252. [35] YU L, XIANG W. X-pruner: explainable pruning for vision transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24355-24363. [36] BUCILUǎ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 535-541. [37] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1503.02531. [38] ASHOK A, RHINEHART N, BEAINY F, et al. N2N learning: network to network compression via policy gradient reinforcement learning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1709.06030. [39] CHEN D F, MEI J P, ZHANG H L, et al. Knowledge distillation with the reused teacher classifier[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11923-11932. [40] ZHAO B R, CUI Q, SONG R J, et al. Decoupled knowledge distillation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11943-11952. [41] SHU C, LIU Y, GAO J, et al. Channel-wise knowledge distillation for dense prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE , 2021: 5311-5320. [42] YANG C G, ZHOU H L, AN Z L, et al. Cross-image relational knowledge distillation for semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12309-12318. [43] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3962-3971. [44] ANIL R, PEREYRA G, PASSOS A, et al. Large scale distributed neural network training through online distillation[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1804.03235. [45] GUO Q S, WANG X J, WU Y C, et al. Online knowledge distillation via collaborative learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11017-11026. [46] CHEN D F, MEI J P, WANG C, et al. Online knowledge distillation with diverse peers[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3430-3437. [47] GE Y X, ZHANG X, CHOI C L, et al. Self-distillation with batch knowledge ensembling improves ImageNet classification[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2104.13298. [48] CHO J H, HARIHARAN B. On the efficacy of knowledge distillation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4793-4801. [49] LIU Y, JIA X, TAN M, et al. Search to distill: pearls are everywhere but not the eyes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7539-7548. [50] BEYER L, ZHAI X H, ROYER A, et al. Knowledge distillation: a good teacher is patient and consistent[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10915- 10924. [51] HAN Y Z, HUANG G, SONG S J, et al. Dynamic neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7436-7456. [52] ZAIDI S, ZELA A, ELSKEN T, et al. Neural ensemble search for uncertainty estimation and dataset shift[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2006.08573. [53] WEN W, LIU H X, CHEN Y R, et al. Neural predictor for neural architecture search[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 660-676. [54] CHEN R Q, LUO J J, NIAN F, et al. SSHNN: semi-supervised hybrid NAS network for echocardiographic image segmentation[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 1541-1545. [55] BAKER B, GUPTA O, NAIK N, et al. Designing neural network architectures using reinforcement learning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1611.02167. [56] ZOPH B, LE Q V, MATHUR V, et al. Neural architecture search with reinforcement learning[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1611.01578. [57] ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8697-8710. [58] PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 4095-4104. [59] LIU H X, SIMONYAN K, YANG Y M, et al. DARTS: differentiable architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1806.09055. [60] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2815-2823. [61] RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]//Proceedings of the 2020 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10425-10433. [62] WANG L N, XIE S N, LI T, et al. Sample-efficient neural architecture search by learning action space[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1906.06832. [63] CHEN B Y, LI P X, LI C M, et al. GLiT: neural architecture search for global and local image transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 12-21. [64] ISOBE T, JIA X, CHEN S J, et al. Multi-target domain adaptation with collaborative consistency learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8183-8192. [65] LI L J, JIN Z. Shadow knowledge distillation: bridging off-line and online knowledge transfer[C]//Advances in Neural Information Processing Systems 35, 2022: 635-649. [66] ZHANG L F, BAO C L, MA K S. Self-distillation: towards efficient and compact neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4388-4403. [67] XIE L X, CHEN X, BI K F, et al. Weight-sharing neural architecture search: a battle to shrink the optimization gap[J]. ACM Computing Surveys, 2021, 54(9): 1-37. [68] ZHANG J X, CHEN X Y, WEI H K, et al. A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation[J]. Applied Energy, 2024, 355: 122184. [69] PRIYADARSHI S, JIANG T, CHENG H P, et al. DONNAv2-lightweight neural architecture search for vision tasks[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1384-1392. [70] KANG J S, KANG J, KIM J J, et al. Neural architecture search survey: a computer vision perspective[J]. Sensors, 2023, 23(3): 1713. [71] CHITTY-VENKATA K T, SOMANI A K. Neural architecture search survey: a hardware perspective[J]. ACM Computing Surveys, 2022, 55(4): 1-36. [72] MELLOR J, TURNER J, STORKEY A, et al. Neural architecture search without training[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 7588-7598. [73] LU Z C, SREEKUMAR G, GOODMAN E, et al. Neural architecture transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 2971-2989. [74] LYU B, YUAN H, LU L F, et al. Resource-constrained neural architecture search on edge devices[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 134-142. [75] XIE S R, ZHENG H H, LIU C X, et al. SNAS: stochastic neural architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1812.09926. [76] ZHONG Z, YAN J, WU W, et al. Practical block-wise neural network architecture generation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2423-2432. [77] LIU H X, SIMONYAN K, VINYALS O, et al. Hierarchical representations for efficient architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1711.00436. [78] RADOSAVOVIC I, JOHNSON J, XIE S N, et al. On network design spaces for visual recognition[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1882-1890. [79] WANG L N, FONSECA R, TIAN Y D, et al. Learning search space partition for black-box optimization using Monte Carlo tree search[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 19511-19522. [80] CI Y Z, LIN C, SUN M, et al. Evolving search space for neural architecture search[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6639-6649. [81] CHITTY-VENKATA K T, EMANI M, VISHWANATH V, et al. Neural architecture search benchmarks: insights and survey[J]. IEEE Access, 2023, 11: 25217-25236. [82] YING C, KLEIN A, CHRISTIANSEN E, et al. NAS-Bench-101: towards reproducible neural architecture search[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 7105-7114. [83] DONG X, YANG Y. Nas-bench-201: extending the scope of reproducible neural architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2001.00326. [84] LIASHCHYNSKYI P, LIASHCHYNSKYI P. Grid search, random search, genetic algorithm: a big comparison for NAS[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1912.06059. [85] ARICAN M E, KARA O, BREDELL G, et al. ISNAS-DIP: image-specific neural architecture search for deep image prior[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1950-1958. [86] WEI C, NIU C, TANG Y P, et al. NPENAS: neural predictor guided evolution for neural architecture search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8441-8455. [87] REAL E, AGGARWAL A, HUANG Y P, et al. Regularized evolution for image classifier architecture search[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2019: 4780-4789. [88] FANG Z Y, REN J C, MARSHALL S, et al. Topological optimization of the DenseNet with pretrained-weights inheritance and genetic channel selection[J]. Pattern Recognition, 2021, 109: 107608. [89] REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2017: 2902-2911. [90] SUN Y N, XUE B, ZHANG M J, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3840-3854. [91] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1710.05941. [92] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. [93] ANDRYCHOWICZ M, DENIL M, COLMENAREJO S G, et al. Learning to learn by gradient descent by gradient descent[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 3988-3996. [94] XU Y H, XIE L X, ZHANG X P, et al. PC-DARTS: partial channel connections for memory-efficient architecture search[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1907.05737. [95] CHU X X, WANG X X, ZHANG B, et al. DARTS-: robustly stepping out of performance collapse without indicators[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2009.01027. [96] LUO R, TIAN F, QIN T, et al. Neural architecture optimization[C]//Advances in Neural Information Processing Systems 31, 2018. [97] WU B C, KEUTZER K, DAI X L, et al. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10726-10734. [98] GAO Y, YANG H, ZHANG P, et al. Graph neural architecture search[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 1403-1409. [99] CHEN X, XIE L, WU J, et al. Progressive differentiable architecture search: bridging the depth gap between search and evaluation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1294-1303. [100] PENG H W, DU H, YU H Y, et al. Cream of the crop: distilling prioritized paths for one-shot neural architecture search[C]//Advances in Neural Information Processing Systems 33, 2020: 17955-17964. [101] YANG H, ZHANG Y S, YIN C B, et al. Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: a novel method to build the automatic recognition model of space target ISAR images[J]. Defence Technology, 2022, 18(6): 1073-1095. [102] WANG X B. Teacher guided neural architecture search for face recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 2817-2825. [103] BOUTROS F, SIEBKE P, KLEMT M, et al. PocketNet: extreme lightweight face recognition network using neural architecture search and multistep knowledge distillation[J]. IEEE Access, 2022, 10: 46823-46833. [104] LIU D C, YAMASAKI T, WANG Y, et al. Toward extremely lightweight distracted driver recognition with distillation-based neural architecture search and knowledge transfer[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 764-777. [105] TROFIMOV I, KLYUCHNIKOV N, SALNIKOV M, et al. Multi-fidelity neural architecture search with knowledge distillation[J]. IEEE Access, 2023, 11: 59217-59225. [106] XIE P T, DU X F. Performance-aware mutual knowledge distillation for improving neural architecture search[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11912-11922. [107] KANG M, MUN J, HAN B. Towards oracle knowledge distillation with neural architecture search[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4404-4411. [108] DOMHAN T, SPRINGENBERG J T, HUTTER F, et al. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 3460-3468. [109] LIU C X, ZOPH B, NEUMANN M, et al. Progressive neural architecture search[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 19-35. [110] GHOLAMI A, KIM S, DONG Z, et al. A survey of quantization methods for efficient neural network inference[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2103.13630. [111] GRAY R M, NEUHOFF D L. Quantization[J]. IEEE Transactions on Information Theory, 1998, 44(6): 2325-2383. [112] RIEMANN B. Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe[M]. G?ttingen: Dieterichschen Buchhandlung, 1867. [113] JEON Y, LEE C, KIM H Y. Genie: show me the data for quantization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12064-12073. [114] SHIN J, SO J, PARK S, et al. NIPQ: noise proxy-based integrated pseudo-quantization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3852-3861. [115] ZHANG J H, ZHAN F N, THEOBALT C, et al. Regularized vector quantization for tokenized image synthesis[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18467-18476. [116] LIU J, NIU L, YUAN Z, et al. PD-Quant: post-training quantization based on prediction difference metric[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24427-24437. [117] NAGEL M, AMJAD R A, VAN BAALEN M, et al. Up or down? adaptive rounding for post-training quantization[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 7197-7206. [118] TU Z J, HU J, CHEN H T, et al. Toward accurate post-training quantization for image super resolution[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5856-5865. [119] ZHANG X, WU X L. LVQAC: lattice vector quantization coupled with spatially adaptive companding for efficient learned image compression[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10239-10248. [120] MA Y, LI H, ZHENG X, et al. Solving oscillation problem in post-training quantization through a theoretical perspective[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7950-7959. [121] LIU Y J, YANG H R, DONG Z, et al. NoisyQuant: noisy bias-enhanced post-training activation quantization for vision transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20321-20330. [122] LIU Z C, CHENG K T, HUANG D, et al. Nonuniform-to-uniform quantization: towards accurate quantization via generalized straight-through estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4942-4952. [123] ESSER S K, MCKINSTRY J L, BABLANI D, et al. Learned step size quantization[EB/OL]. [2023-11-06]. https://arxiv.org/abs/1902.08153. [124] HUANG X, SHEN Z, LI S, et al. SDQ: stochastic differentiable quantization with mixed precision[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 9295-9309. [125] LIN C, PENG B, LI Z Y, et al. Bit-shrinking: limiting instantaneous sharpness for improving post-training quantization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16196-16205. [126] AN J L, LEI J H, SONG Y Z, et al. Tensor based multiscale low rank decomposition for hyperspectral images dimensionality reduction[J]. Remote Sensing, 2019, 11(12): 1485. [127] MO D M, WONG W K, LAI Z H, et al. Weighted double-low-rank decomposition with application to fabric defect detection[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(3): 1170-1190. [128] YANG H R, TANG M X, WEN W, et al. Learning low-rank deep neural networks via singular vector orthogonality regularization and singular value sparsification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 2899-2908. [129] AHMED J, GAO B, WOO W L, et al. Ensemble joint sparse low-rank matrix decomposition for thermography diagnosis system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2648-2658. [130] SHI B S, LIANG J Z, DI L, et al. Fabric defect detection via low-rank decomposition with gradient information and structured graph algorithm[J]. Information Sciences, 2021, 546: 608-626. [131] LI H F, HE X G, YU Z T, et al. Noise-robust image fusion with low-rank sparse decomposition guided by external patch prior[J]. Information Sciences, 2020, 523: 14-37. [132] YIN M, SUI Y, LIAO S Y, et al. Towards efficient tensor decomposition-based DNN model compression with optimization framework[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10669-10678. [133] AHMED W, HAJIMOLAHOSEINI H, WEN A, et al. Speeding up resnet architecture with layers targeted low rank decomposition[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2309.12412. [134] WANG D, SMITH D S, YANG X P. Dynamic MR image reconstruction based on total generalized variation and low-rank decomposition[J]. Magnetic Resonance in Medicine, 2020, 83(6): 2064-2076. [135] LI L, LI W, DU Q, et al. Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection[J]. IEEE Transactions on Cybernetics, 2021, 51(9): 4363-4372. [136] XUE J Z, ZHAO Y Q, LIAO W Z, et al. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 5174-5189. [137] SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse low rank factorization for deep neural network compression[J]. Neurocomputing, 2020, 398: 185-196. [138] HAJIMOLAHOSEINI H, AHMED W, REZAGHOLIZADEH M, et al. Strategies for applying low rank decomposition to transformer-based models[C]//Proceedings of the 36th Conference on Neural Information Processing Systems, 2022. [139] WANG Y, KANG S, DOERKSEN J D, et al. Surgical guidance via multiplexed molecular imaging of fresh tissues labeled with SERS-coded nanoparticles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(4): 6802911. [140] LYU K D, LI H, GONG M G, et al. Surrogate-assisted evolutionary multiobjective neural architecture search based on transfer stacking and knowledge distillation[J]. IEEE Transactions on Evolutionary Computation, 2023, 28(3): 608-622. [141] HAMAMCI I E, ER S, SEKUBOYINA A, et al. Generate-CT: text-conditional generation of 3D chest CT volumes[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2305.16037. [142] YIN Z, WANG J, CAO J, et al. LAMM: language-assisted multi-modal instruction-tuning dataset, framework, and benchmark[C]//Advances in Neural Information Processing Systems 36, 2024. [143] QIN Z, LI D, SUN W, et al. Scaling transnormer to 175 billion parameters[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2307.14995. [144] KORYAKOVSKIY I, YAKOVLEVA A, BUCHNEV V, et al. One-shot model for mixed-precision quantization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7939-7949. [145] DEL CORRO L, DEL GIORNO A, AGARWAL S, et al. SkipDecode: autoregressive skip decoding with batching and caching for efficient LLM inference[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2307.02628. [146] SHAO W Q, CHEN M Z, ZHANG Z Y, et al. OmniQuant: omnidirectionally calibrated quantization for large language models[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2308.13137. [147] ASHKBOOS S, MARKOV I, FRANTAR E, et al. QUIK: towards end-to-end 4-bit inference on generative large language models[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2310.09259. [148] WANG H, MA S, DONG L, et al. BitNet: scaling 1-bit transformers for large language models[EB/OL]. [2023-11-06]. https://arxiv.org/abs/2310.11453. [149] XIAO G, LIN J, SEZNEC M, et al. SmoothQuant: accurate and efficient post-training quantization for large language models[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 38087-38099. [150] YAO Z W, AMINABADI R Y, ZHANG M J, et al. ZeroQuant: efficient and affordable post-training quantization for large-scale transformers[C]//Advances in Neural Information Processing Systems 35, 2022: 27168-27183. |
[1] | CHEN Zhilan, TANG Haoyang. Research on Robot Path Planning Based on Improved RRT-Connect Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 396-405. |
[2] | WANG Xiaoyu, LI Xin, HU Mianning, XUE Di. CIL-LLM: Incremental Learning Framework Based on Large Language Models for Category Classification [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 374-384. |
[3] | XIONG Kang, LIU Sicong, WANG Hongtao, GAO Yuan, GUO Bin, YU Zhiwen. Compiler Optimization for On-device Deep Learning in UAV Cooperative Localization [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 141-157. |
[4] | MA Chang, TIAN Yonghong, ZHENG Xiaoli, SUN Kangkang. Survey of Neural Machine Translation Based on Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1725-1747. |
[5] | CHEN Jiujian, DAI Qiangqiang, LI Ronghua, WANG Guoren. Research on Directed Clique Enumeration with Strongly Connected Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1211-1222. |
[6] | ZHAO Honglei, TANG Huanling, ZHANG Yu, SUN Xueyuan, LU Mingyu. Named Entity Recognition Model Based on k-best Viterbi Decoupling Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 780-794. |
[7] | LIU Jun, LENG Fangling, WU Wangwang, BAO Yubin. Construction Method of Textbook Knowledge Graph Based on Multimodal and Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2901-2911. |
[8] | RAN Mengying, YANG Wenzhu, YIN Qunjie. Channel Pruning Method for Anchor-Free Detector [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1634-1643. |
[9] | LIN Zhenyuan, LIN Shaohui, YAO Yiwu, HE Gaoqi, WANG Changbo, MA Lizhuang. Multi-teacher Contrastive Knowledge Inversion for Data-Free Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2721-2733. |
[10] | MA Jinlin, LIU Yuhao, MA Ziping, GONG Yuanwen, ZHU Yanbin. HSKDLR: Lightweight Lip Reading Method Based on Homogeneous Self-Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2689-2702. |
[11] | LI Na, ZHU Huaijie, LIU Wei, YIN Jian. Geo-Socially Tenuous Group Query [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2151-2160. |
[12] | MENG Xianfa, LIU Fang, LI Guang, HUANG Mengmeng. Review of Knowledge Distillation in Convolutional Neural Network Compression [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1812-1829. |
[13] | HAN Xixian, SONG Cui, GE Yunru, GAO Hong, LI Jianzhong. Efficient top-k Skyline Query Algorithm on Massive Data [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 775-787. |
[14] | ZHANG Shiyu, SONG Wei, WANG Chenni, ZHENG Shanshan. DBN Model Using Dynamic Growing and Pruning Algorithm to Optimize Network Structure [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1721-1732. |
[15] | HUANG Cong, CHANG Tao, TAN Hu, LV Shaohe, WANG Xiaodong. Neural Network Pruning Based on Weight Similarity [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1278-1285. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/