
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1353-1364.DOI: 10.3778/j.issn.1673-9418.2405004
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
LIU Guihong, ZHOU Zongrun, MENG Xiangfu
Online:2025-05-01
Published:2025-04-28
刘桂红,周宗润,孟祥福
LIU Guihong, ZHOU Zongrun, MENG Xiangfu. Pedestrian Trajectory Prediction Based on Transformer and Multi-relation Graph Convolutional Networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364.
刘桂红, 周宗润, 孟祥福. 基于Transformer和多关系图卷积网络的行人轨迹预测[J]. 计算机科学与探索, 2025, 19(5): 1353-1364.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2405004
| [1] MONREALE A, PINELLI F, TRASARTI R, et al. Where N-next: a location predictor on trajectory pattern mining[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 637-646. [2] WANG Z H, LIU S, ZHANG J H, et al. A spatio-temporal CRF for human interaction understanding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1647-1660. [3] BETANCOURT A, MORERIO P, REGAZZONI C S, et al. The evolution of first person vision methods: a survey[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 744-760. [4] JI Y L, YANG Y, SHEN F M, et al. A survey of human action analysis in HRI applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 2114-2128. [5] MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 935-942. [6] YAMAGUCHI K, BERG A C, ORTIZ L E, et al. Who are you with and where are you going?[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1345-1352. [7] PELLEGRINI S, ESS A, VAN GOOL L. Improving data association by joint modeling of pedestrian trajectories and groupings[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 452-465. [8] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 961-971. [9] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264. [10] VEMULA A, MUELLING K, OH J. Social attention: modeling attention in human crowds[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 4601-4607. [11] SHI X D, SHAO X W, WU G M, et al. Social-DPF: socially acceptable distribution prediction of futures[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2550-2557. [12] BAE I, JEON H G. Disentangled multi-relational graph convolutional network for pedestrian trajectory prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 911-919. [13] 李文礼, 张祎楠, 王梦昕. 基于视野域机制的行人轨迹预测[J]. 计算机应用研究, 2023, 40(1): 80-85. LI W L, ZHANG Y N, WANG M X. Pedestrian trajectory prediction based on field of view mechanism[J]. Application Research of Computers, 2023, 40(1): 80-85. [14] MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14412-14420. [15] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 759-776. [16] BAE I, PARK J H, JEON H G. Learning pedestrian group representations for multi-modal trajectory prediction[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 270-289. [17] BARTOLI F, LISANTI G, BALLAN L, et al. Context-aware trajectory prediction[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 1941-1946. [18] FERNANDO T, DENMAN S, SRIDHARAN S, et al. Soft + Hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection[J]. Neural Networks, 2018, 108: 466-478. [19] SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12018-12027. [20] LI J C, MA H B, TOMIZUKA M. Conditional generative neural system for probabilistic trajectory prediction[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2019: 6150-6156. [21] SHI X D, SHAO X W, FAN Z P, et al. Multimodal interaction-aware trajectory prediction in crowded space[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11982-11989. [22] KOTHARI P, SIFRINGER B, ALAHI A. Interpretable social anchors for human trajectory forecasting in crowds[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15551-15561. [23] XU C X, MAO W B, ZHANG W J, et al. Remember intentions: retrospective-memory-based trajectory prediction[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 6478-6487. [24] 汤凌燕, 熊聪聪, 王嫄, 等. 基于深度学习的短文本情感倾向分析综述[J]. 计算机科学与探索, 2021, 15(5): 794-811. TANG L Y, XIONG C C, WANG Y, et al. Review of deep learning for short text sentiment tendency analysis[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 794-811. [25] XUE H, HUYNH D Q, REYNOLDS M. SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1186-1194. [26] 裴利沈, 赵雪专. 群体行为识别深度学习方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 775-790. PEI L S, ZHAO X Z. Survey of collective activity recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. [27] SHAFIEE N, PADIR T, ELHAMIFAR E. Introvert: human trajectory prediction via conditional 3D attention[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16810-16820. [28] CHEN Y Y, LIU C C, SHI B E, et al. Robot navigation in crowds by graph convolutional networks with attention learned from human gaze[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2754-2761. [29] TRAN K N, GALA A, KAKADIARIS I A, et al. Activity analysis in crowded environments using social cues for group discovery and human interaction modeling[J]. Pattern Recognition Letters, 2014, 44: 49-57. [30] ZHAO T Y, XU Y F, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12118-12126. [31] KOSARAJU V, SADEGHIAN A, MARTíN-MARTíN R, et al. Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]//Advances in Neural Information Processing Systems 32, 2019: 137-146. [32] LIANG J W, JIANG L, NIEBLES J C, et al. Peeking into the future: predicting future person activities and locations in videos[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5718-5727. [33] SUN H, ZHAO Z Q, HE Z H. Reciprocal learning networks for human trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7414-7423. [34] HUG R, HüBNER W, ARENS M. Introducing probabilistic Bézier curves for N-step sequence prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(6): 10162-10169. [35] 李明, 赵勋杰. 改进的基于高斯混合模型的运动目标检测算法[J]. 计算机工程与应用, 2011, 47(8): 204-206. LI M, ZHAO X J. Improved moving objects detection algorithm based on Gaussian mixture model[J]. Computer Engineering and Applications, 2011, 47(8): 204-206. [36] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1349-1358. [37] LEE N, CHOI W, VERNAZA P, et al. DESIRE: distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2165-2174. [38] IVANOVIC B, PAVONE M. The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2375-2384. [39] SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 683-700. [40] XU Y, WANG L C, WANG Y Z, et al. Adaptive trajectory prediction via transferable GNN[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 6510-6521. [41] GU T P, CHEN G Y, LI J L, et al. Stochastic trajectory prediction via motion indeterminacy diffusion[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17092-17101. [42] LIU Z Y, ZHOU J. Graph attention networks[M]//Introduction to graph neural networks: synthesis lectures on artificial intelligence and machine learning. Cham: Springer, 2020: 39-41. [43] HUANG Y F, BI H K, LI Z X, et al. STGAT: modeling spatial-temporal interactions for human trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6271-6280. [44] SUN J H, JIANG Q H, LU C W. Recursive social behavior graph for trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 657-666. [45] REHDER E, KLOEDEN H. Goal-directed pedestrian prediction[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 139-147. [46] NGUYEN A D, TRAN N H, NGUYEN T T, et al. A hybrid multi-waypoints path planning system for robots with minimum turning radius constraint using GA-B-spline and Dubins interpolation[C]//Proceedings of the 2021 International Conference on Advanced Mechanical Engineering, Automation, and Sustainable Development. Cham: Springer, 2022: 906-917. [47] DENDORFER P, O?EP A, LEAL-TAIXé L. Goal-GAN: multimodal trajectory prediction based on goal position estimation[C]//Proceedings of the 15th Asian Conference on Computer Vision. Cham: Springer, 2021: 405-420. [48] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[EB/OL]. [2024-03-10]. https://arxiv.org/abs/2001.00735. [49] MARCHETTI F, BECATTINI F, SEIDENARI L, et al. MANTRA: memory augmented networks for multiple trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7141-7150. [50] DENDORFER P, ELFLEIN S, LEAL-TAIXé L. MG-GAN: a multi-generator model preventing out-of-distribution samples in pedestrian trajectory prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13138-13147. [51] YU C J, MA X, REN J W, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 507-523. [52] SHI L S, WANG L, LONG C J, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8990-8999. [53] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7444-7452. [54] LIAN J, REN W W, LI L H, et al. PTP-STGCN: pedestrian trajectory prediction based on a spatio-temporal graph convolutional neural network[J]. Applied Intelligence, 2023, 53(3): 2862-2878. [55] LIU Y J, YAN Q, ALAHI A. Social NCE: contrastive learning of socially-aware motion representations[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15098-15109. [56] CHEN G Y, LI J L, LU J W, et al. Human trajectory prediction via counterfactual analysis[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9804-9813. [57] ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12077-12086. [58] MONTI A, PORRELLO A, CALDERARA S, et al. How many observations are enough? Knowledge distillation for trajectory forecasting[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 6543-6552. |
| [1] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [2] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
| [3] | LIU Chao, LIANG Anting, LIU Xiaoyang, HUANG Xianying. Social Network Nodes Classification Method Based on Multi-information Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2198-2208. |
| [4] | GU Yuying, GAO Meifeng. Aspect-Level Sentiment Analysis Combining Part-of-Speech and External Knowledge [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2488-2498. |
| [5] | WANG Beibei, WAN Huaiyu, GUO Shengnan, LIN Youfang. Local and Global Spatial-Temporal Networks for Traffic Accident Risk Forecasting [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1694-1702. |
| [6] | LIN Qika, ZHANG Lingling, LIU Jun, ZHAO Tianzhe. Question-aware Graph Convolutional Network for Educational Knowledge Base Question Answering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1880-1887. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/