[1] TU Q, LI Y, CUI J, et al. MISC: a mixed strategy-aware model integrating COMET for emotional support conversation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 308-319.
[2] CHENG J, SABOUR S, SUN H, et al. PAL: persona-augmented emotional support conversation generation[C]//Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 535-554.
[3] PENG W, HU Y, XING L, et al. Control globally, understand locally: a global-to-local hierarchical graph network for emotional support conversation[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 4324-4330.
[4] PENG W, HU Y, XING L, et al. FADO: feedback-aware double controlling network for emotional support conversation[J]. Knowledge-Based Systems, 2023, 264: 110340.
[5] CHENG Y, LIU W, LI W, et al. Improving multi-turn emotional support dialogue generation with lookahead strategy planning[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, Dec 7-11, 2022. Stroudsburg: ACL, 2022: 3014-3026.
[6] CHEN M, YU X, SHI W, et al. Controllable mixed-initiative dialogue generation through prompting[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 951-966.
[7] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2303.18223.
[8] ZHOU D, SCH?RLI N, HOU L, et al. Least-to-most prompting enables complex reasoning in large language models[EB/OL]. [2024-05-12]. https://arxiv.org/abs/2205.10625.
[9] 赵妍妍, 陆鑫, 赵伟翔, 等. 情感对话技术综述[J]. 软件学报, 2024, 35(3): 1377-1402.
ZHAO Y Y, LU X, ZHAO W X, et al. Survey on emotional dialogue techniques[J]. Journal of Software, 2024, 35(3): 1377-1402.
[10] 庄寅, 刘箴, 刘婷婷, 等. 文本情感对话系统研究综述[J]. 计算机科学与探索, 2021, 15(5): 825-837.
ZHUANG Y, LIU Z, LIU T T, et al. Survey of affective-based dialogue system[J]. Journal of Frontiers of Computer Science and Technology, 2021,15(5): 825-837.
[11] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 730-739.
[12] SONG Z, ZHENG X, LIU L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 3685-3695.
[13] QIAN Y, WANG B, MA S, et al. Think twice: a human-like two-stage conversational agent for emotional response generation[C]//Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, London, May 29-Jun 2 2023. New York: ACM, 2023: 727-736.
[14] MAJUMDER N, HONG P, PENG S, et al. MIME: mimicking emotions for empathetic response generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 8968-8979.
[15] SABOUR S, ZHENG C, HUANG M. CEM: commonsense-aware empathetic response generation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 11229-11237.
[16] LI Q, LI P, REN Z, et al. Knowledge bridging for empathetic dialogue generation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 10993-11001.
[17] LIU S, ZHENG C, DEMASI O, et al. Towards emotional support dialog systems[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3469-3483.
[18] XU X, MENG X, WANG Y. PoKE: prior knowledge enhanced emotional support conversation with latent variable[EB/OL]. [2024-05-12]. https://arxiv.org/abs/2210.12640.
[19] HAN S, PARK S J, KIM C W, et al. Persona extraction through semantic similarity for emotional support conversation generation[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Apr 14-19, 2024. Piscataway: IEEE, 2024: 11321-11325.
[20] ZHAO W, ZHAO Y, WANG S, et al. TransESC: smoothing emotional support conversation via turn-level state transition[C]//Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 6725-6739.
[21] LI J, PENG B, HSU Y Y. Emstremo: adapting emotional support response with enhanced emotion-strategy integrated selection[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, Torino, May 20-25, 2024: 5794-5805.
[22] LAMICHHANE B. Evaluation of ChatGPT for NLP-based mental health applications[EB/OL]. [2024-05-15]. https://arxiv.org/abs/2303.15727.
[23] YANG K, JI S, ZHANG T, et al. Towards interpretable mental health analysis with large language models[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 6056-6077.
[24] XU X, YAO B, DONG Y, et al. Mental-LLM: leveraging large language models for mental health prediction via online text data[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2024, 8(1): 1-32.
[25] QIU H, HE H, ZHANG S, et al. SMILE: single-turn to multi-turn inclusive language expansion via chatgpt for mental health support[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2305.00450.
[26] CHEN Y, XING X, LIN J, et al. SoulChat: improving LLMs’ empathy, listening, and comfort abilities through fine-tuning with multi-turn empathy conversations[C]//Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 1170-1183.
[27] LI A, LU Y, SONG N, et al. Automatic evaluation for mental health counseling using LLMs[EB/OL]. [2024-05-15]. https://arxiv.org/abs/2402.11958.
[28] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, New Orleans, Nov 28-Dec 9, 2022: 24824-24837.
[29] YAO S, YU D, ZHAO J, et al. Tree of thoughts: deliberate problem solving with large language models[C]//Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, New Orleans, Dec 10-16, 2023.
[30] NING X, LIN Z, ZHOU Z, et al. Skeleton-of-thought: prompting LLMs for efficient parallel generation[C]//Proceedings of the 12th International Conference on Learning Representations, Vienna, May 7-11, 2024.
[31] BESTA M, BLACH N, KUBICEK A, et al. Graph of thoughts: solving elaborate problems with large language models[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Feb 20-27, 2024. Menlo Park: AAAI, 2024: 17682-17690.
[32] LI C, LIANG J, ZENG A, et al. Chain of code: reasoning with a language model-augmented code emulator[EB/OL]. [2024-05-16]. https://arxiv.org/abs/2312.04474.
[33] LI X, ZHAO R, CHIA Y K, et al. Chain-of-knowledge: grounding large language models via dynamic knowledge adapting over heterogeneous sources[EB/OL]. [2024-05-16]. https://arxiv.org/abs/2305.13269.
[34] XI N, MENG J, YUAN J. Chain-of-look prompting for verb-centric surgical triplet recognition in endoscopic videos[C]//Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, Oct 29-Nov 3, 2023. New York: ACM, 2023: 5007-5016.
[35] MADAAN A, TANDON N, GUPTA P, et al. Self-refine: iterative refinement with self-feedback[C]//Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, New Orleans, Dec 10-16, 2023.
[36] SHINN N, CASSANO F, GOPINATH A, et al. Reflexion: language agents with verbal reinforcement learning[C]//Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, New Orleans, Dec 10-16, 2023.
[37] LIU J, PASUNURU R, HAJISHIRZI H, et al. Crystal: introspective reasoners reinforced with self-feedback[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 11557-11572.
[38] ZHAO R, LI X, JOTY S, et al. Verify-and-edit: a knowledge-enhanced chain-of-thought framework[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 5823-5840.
[39] LI Y, LIN Z, ZHANG S, et al. Making language models better reasoners with step-aware verifier[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 5315-5333.
[40] LING Z, FANG Y, LI X, et al. Deductive verification of chain-of-thought reasoning[C]//Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, New Orleans, Dec 10-16, 2023.
[41] TRIVEDI H, BALASUBRAMANIAN N, KHOT T, et al. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Jul 9-14, 2023. Stroudsburg: ACL, 2023: 10014-10037.
[42] LI R, DU X. Leveraging structured information for explainable multi-hop question answering and reasoning[C]//Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Dec 6-10, 2023. Stroudsburg: ACL, 2023: 6779-6789.
[43] SAP M, LE BRAS R, ALLAWAY E, et al. ATOMIC: an atlas of machine commonsense for if-then reasoning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3027-3035.
[44] BOSSELUT A, RASHKIN H, SAP M, et al. COMET: commonsense transformers for automatic knowledge graph construction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28- Aug 2, 2019. Stroudsburg: ACL, 2019: 4762-4779.
[45] GAO S, HWANG J D, KANNO S, et al. ComFact: a benchmark for linking contextual commonsense knowledge[C]//Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, Dec 7-11, 2022. Stroudsburg: ACL, 2022: 1656-1675.
[46] HILL C E. Helping skills: facilitating exploration, insight, and action[M]. American Psychological Association, 2020.
[47] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, Dec 6-12, 2020: 9459-9474.
[48] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3982-3992. |