[1] LI S, LIU F, HAO Z H, et al. Unsupervised few-shot image classification by learning features into clustering space[C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 420-436.
[2] ZHANG Z D, XUE Z Y, CHEN Y, et al. Boosting verified training for robust image classifications via abstraction[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16251-16260.
[3] FANG S C, XIE H T, WANG Y X, et al. Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7094-7103.
[4] SHEN S, ZHAO W L, MENG Z B, et al. DiffTalk: crafting diffusion models for generalized audio-driven portraits animation[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1982-1991.
[5] 郭峰. 面向深度学习语音识别系统的对抗攻防方法研究[D]. 济南: 山东大学, 2023.
GUO F. Research on adversarial attack and defense methods for deep learning speech recognition systems[D]. Jinan: Shandong University, 2023.
[6] 王曙燕, 金航, 孙家泽. GAN图像对抗样本生成方法[J]. 计算机科学与探索, 2021, 15(4): 702-711.
WANG S Y, JIN H, SUN J Z. Method for image adversarial samples generating based on GAN[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 702-711.
[7] 黄震. 基于模型检测的自动驾驶领域安全攸关对抗样本识别方法[D]. 上海: 华东师范大学, 2023.
HUANG Z. A model checking based approach to detect safety-critical adversarial examples on autonomous driving systems[D]. Shanghai: East China Normal University, 2023.
[8] 蔺琛皓, 沈超, 邓静怡, 等. 虚假数字人脸内容生成与检测技术[J]. 计算机学报, 2023, 46(3): 469-498.
LIN C H, SHEN C, DENG J Y, et al. Digitally forged face content creation and detection[J]. Chinese Journal of Computers, 2023, 46(3): 469-498.
[9] AHMED N, NATARAJAN T, RAO K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974(1): 90-93.
[10] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2024-04-16]. https://arxiv.org/abs/1312.6199.
[11] BRENDEL W, RAUBER J, BETHGE M. Decision-based adversarial attacks: reliable attacks against black-box machine learning models[EB/OL]. [2024-04-16]. https://arxiv.org/abs/1712.04248.
[12] CHENG M H, LE T, CHEN P Y, et al. Query-efficient hard-label black-box attack: an optimization-based approach[EB/OL]. [2024-04-16]. https://arxiv.org/abs/1807.04457.
[13] CHENG M H, SINGH S, CHEN P, et al. Sign-OPT: a query-efficient hard-label adversarial attack[EB/OL]. [2024-04-16]. https://arxiv.org/abs/1909.10773.
[14] CHEN J B, JORDAN M I, WAINWRIGHT M J. HopSkipJumpAttack: a query-efficient decision-based attack[C]//Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 1277-1294.
[15] LI H C, XU X J, ZHANG X L, et al. QEBA: query-efficient boundary-based blackbox attack[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1218-1227.
[16] LIU Y J, MOOSAVI-DEZFOOLI S M, FROSSARD P. A geometry-inspired decision-based attack[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4889-4897.
[17] SHUKLA S N, SAHU A K, WILLMOTT D, et al. Simple and efficient hard label black-box adversarial attacks in low query budget regimes[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1461-1469.
[18] RAHMATI A, MOOSAVI-DEZFOOLI S M, FROSSARD P, et al. GeoDA: a geometric framework for black-box adversarial attacks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8443-8452.
[19] MAHO T, FURON T, LE MERRER E. SurFree: a fast surrogate-free black-box attack[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10425-10434.
[20] WANG X S, ZHANG Z L, TONG K H, et al. Triangle attack: a query-efficient decision-based adversarial attack[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 156-174.
[21] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
[22] FAWCETT J A. Inversion of N-dimensional spherical averages[J]. SIAM Journal on Applied Mathematics, 1985, 45(2): 336-341.
[23] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-17]. https://arxiv.org/abs/1409.1556.
[25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[26] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826.
[27] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[28] KOLESNIKOV A, BEYER L, ZHAI X H, et al. Big transfer (BiT): general visual representation learning[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 491-507.
[29] DOSOVITSKIY A. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-04-17]. https://arxiv.org/abs/2010.11929. |