Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2635-2647.DOI: 10.3778/j.issn.1673-9418.2410024

• Frontiers·Surveys • Previous Articles     Next Articles

Survey of Zero-Shot Multilingual Neural Machine Translation

XIAO Zeng, WANG Siriguleng, SI Qintu   

  1. College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
  • Online:2025-10-01 Published:2025-09-30

零样本多语言神经机器翻译综述

肖增,王斯日古楞,斯琴图   

  1. 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022

Abstract: In multilingual neural machine translation, zero-shot translation is an important research direction, which aims to enable the model to translate language pairs that have never been seen during the training process, and realize cross-lingual transfer learning. However, existing multilingual models still face problems such as semantic bias, unstable translation quality, and asymmetric language direction when dealing with unseen language pairs, which seriously affects the reliability and consistency of translation results. In order to systematically sort out the current research status in this field, this paper reviews the core issue of “the impact of multilingual model construction method on zero-shot translation performance”, aiming to provide theoretical support and methodological reference for subsequent researchers. Zero-shot translation is of great significance for training translation tasks in corpus-poor languages, which reduces the translation cost to a great extent. This paper firstly introduces the research background, basic definition, core principles of zero-shot translation and its practical application value in the scenarios of cross-cultural communication and new language support from the perspective of corpus resources. Then, for the current mainstream zero-shot translation modelling methods, this paper introduces the three directions of constructing multilingual neural machine translation based on pre-trained model, bilingual supervised training and large language model. Finally, this paper analyzes the future research trend of zero-shot translation in multilingual neural machine translation to provide reference for further research in this field.

Key words: zero-shot translation, pre-trained model, bilingual supervised training, large language model, multilingual neural machine translation

摘要: 在多语言神经机器翻译中,零样本翻译是一个重要的研究方向,旨在使模型能够翻译训练过程中从未见过的语言对,实现跨语言迁移学习。然而,现有多语言模型在处理未见过语言对时,仍面临诸如语义偏移、翻译质量不稳定、语言方向不对称等问题,严重影响了翻译效果的可靠性与一致性。为系统性梳理该领域的研究现状,围绕“多语言模型构建方式对零样本翻译性能的影响”这一核心问题展开综述,旨在为后续研究者提供理论支持和方法借鉴。零样本翻译对于训练语料匮乏的语言对翻译任务意义重大,很大程度上降低了翻译成本。从语料资源的角度出发,介绍了零样本翻译的研究背景、基本定义、核心原理及其在跨文化沟通、新语言支持等场景中的实际应用价值。针对当前主流的零样本翻译建模方法,从基于预训练模型、双语监督训练和大语言模型构建多语言神经机器翻译的三个方向进行介绍。分析了多语言神经机器翻译中零样本翻译的未来研究趋势,为该领域进一步研究提供参考。

关键词: 零样本翻译, 预训练模型, 双语监督训练, 大语言模型, 多语言神经机器翻译