[1] WEBSTER S W, ALBERTSON B. Emotion and politics: noncognitive psychological biases in public opinion[J]. Annual Review of Political Science, 2022, 25: 401-418.
[2] RUESS C, HOFFMANN C P, BOULIANNE S, et al. Online political participation: the evolution of a concept[J]. Information, Communication & Society, 2023, 26(8): 1495-1512.
[3] SEGESTEN A D, BOSSETTA M. A typology of political participation online: how citizens used Twitter to mobilize during the 2015 British general elections[J]. Information, Communication & Society, 2017, 20(11): 1625-1643.
[4] GLANDT K, KHANAL S, LI Y J, et al. Stance detection in COVID-19 Tweets[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 1596-1611.
[5] LI Y J, SOSEA T, SAWANT A, et al. P-stance: a large dataset for stance detection in political domain[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2355-2365.
[6] NIE Y Y, TIAN Y H, WAN X, et al. Named entity recognition for social media texts with semantic augmentation[EB/OL]. [2024-05-17]. https://arxiv.org/abs/2010.15458.
[7] ALDAYEL A, MAGDY W. Stance detection on social media: state of the art and trends[J]. Information Processing & Management, 2021, 58(4): 102597.
[8] MIN B N, ROSS H, SULEM E, et al. Recent advances in natural language processing via large pre-trained language models: a survey[J]. ACM Computing Surveys, 2023, 56(2): 1-40.
[9] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 1877-1901.
[10] TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models[EB/OL]. [2024-05-17]. https://arxiv.org/abs/2307.09288.
[11] YOUNG A, CHEN B, LI C, et al. Yi: open foundation models by 01.AI[EB/OL]. [2024-05-17]. https://arxiv.org/abs/2403. 04652.
[12] ZUO J W, VELIKANOV M, RHAIEM D E, et al. Falcon mamba: the first competitive attention-free 7B language model[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2410.05355.
[13] TEAM J, LENZ B, ARAZI A, et al. Jamba-1.5: hybrid transformer-mamba models at scale[EB/OL]. [2024-11-25]. https:// arxiv.org/abs/2408.12570.
[14] TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis[J]. Computational Linguistics, 2011, 37(2): 267-307.
[15] AL-GHADIR A I, AZMI A M, HUSSAIN A. A novel approach to stance detection in social media tweets by fusing ranked lists and sentiments[J]. Information Fusion, 2021, 67: 29-40.
[16] Kü?üK D, CAN F. Stance detection: a survey[J]. ACM Computing Surveys, 2020, 53(1): 1-37.
[17] DU J C, XU R F, HE Y L, et al. Stance classification with target-specific neural attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 3988-3994.
[18] ZHAO G Z, YANG P. Pretrained embeddings for stance detection with hierarchical capsule network on social media[J]. ACM Transactions on Information Systems, 2020, 39(1): 1-32.
[19] KAWINTIRANON K, SINGH L. Knowledge enhanced masked language model for stance detection[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 4725-4735.
[20] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[EB/OL]. [2024-05-17]. https://arxiv.org/abs/2303.18223.
[21] 于丰瑞, 杜彦辉. 网络威胁技战术情报识别提取生成式技术研究[J]. 计算机科学与探索, 2025, 19(1): 118-131.
YU F R, DU Y H. Research on generative technology of network threat technical and tactical information identification and extraction[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 118-131.
[22] THIRUNAVUKARASU A J, TING D S J, ELANGOVAN K, et al. Large language models in medicine[J]. Nature Medicine, 2023, 29(8): 1930-1940.
[23] 徐磊, 胡亚豪, 陈满, 等. 融合前缀调优和提示学习的仇恨言论检测方法[J]. 计算机科学与探索, 2025, 19(1): 97-106.
XU L, HU Y H, CHEN M, et al. Hate speech detection method integrating prefix tuning and prompt learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 97-106.
[24] CHANG Y P, WANG X, WANG J D, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3): 1-45.
[25] KOTEK H, DOCKUM R, SUN D, et al. Gender bias and stereotypes in large language models[C]//Proceedings of the 2023 ACM Collective Intelligence Conference. New York: ACM, 2023: 12-24.
[26] LI A, LIANG B, ZHAO J Q, et al. Stance detection on social media with background knowledge[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 15703-15717.
[27] MOHAMMAD S, KIRITCHENKO S, SOBHANI P, et al. SemEval-2016 Task 6: detecting stance in Tweets[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 31-41.
[28] DEY K, SHRIVASTAVA R, KAUSHIK S. Twitter stance detection: a subjectivity and sentiment polarity inspired two-phase approach[C]//Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017: 365-372.
[29] SIDDIQUA U A, CHY A N, AONO M. Tweet stance detection using an attention based neural ensemble model[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 1868-1873.
[30] EBRAHIMI J, DOU D, LOWD D. A joint sentiment-target-stance model for stance classification in Tweets[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2016: 2656-2665.
[31] LI Y J, CARAGEA C. Multi-task stance detection with sentiment and stance lexicons[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6299-6305.
[32] GóMEZ-SUTA M, ECHEVERRY-CORREA J, SOTO-MEJíA J A. Stance detection in tweets: a topic modeling approach supporting explainability[J]. Expert Systems with Applications, 2023, 214: 119046.
[33] REVEILHAC M, SCHNEIDER G. Replicable semi-supervised approaches to state-of-the-art stance detection of tweets[J]. Information Processing & Management, 2023, 60(2): 103199.
[34] UPADHYAYA A, FISICHELLA M, NEJDL W. Toxicity, morality, and speech act guided stance detection[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 4464-4478.
[35] DING D J, FU X H, PENG X J, et al. Leveraging chain-of-thought to enhance stance detection with prompt-tuning[J]. Mathematics, 2024, 12(4): 568. |