Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (1): 24-43.DOI: 10.3778/j.issn.1673-9418.2303056
• Frontiers·Surveys • Previous Articles Next Articles
ZENG Jun, WANG Ziwei, YU Yang, WEN Junhao, GAO Min
Online:
2024-01-01
Published:
2024-01-01
曾骏,王子威,于扬,文俊浩,高旻
ZENG Jun, WANG Ziwei, YU Yang, WEN Junhao, GAO Min. Word Embedding Methods in Natural Language Processing: a Review[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 24-43.
曾骏, 王子威, 于扬, 文俊浩, 高旻. 自然语言处理领域中的词嵌入方法综述[J]. 计算机科学与探索, 2024, 18(1): 24-43.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2303056
[1] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. [2] HINTON G E. Learning distributed representations of concepts[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society. Amherst: Erlbaum Associates, 1986: 1-12. [3] BENGIO Y, DUCHARME R, VINCENT P. A neural probab-ilistic language model[C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2000: 932-938. [4] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [5] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. [6] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 2227-2237. [7] SENNRICH R, HADDOW B, BIRCH A. Neural machine translation of rare words with subword units[C]//Proceedings of the 54th Annual Meeting of the Association for Computa-tional Linguistics. Stroudsburg: ACL, 2016: 1715-1725. [8] KUDO T. Subword regularization: improving neural network translation models with multiple subword candidates[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 66-75. [9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017: 5998-6008. [10] CAMACHO-COLLADOS J, PILEHVAR M T. From word to sense embeddings: a survey on vector representations of meaning[J]. Journal of Artificial Intelligence Research, 2018, 63: 743-788. [11] 郁可人, 傅云斌, 董启文. 基于神经网络语言模型的分布式词向量研究进展[J]. 华东师范大学学报(自然科学版), 2017(5): 52-65. YU K R, FU Y B, DONG Q W. Survey on distributed word embeddings based on neural network language models[J]. Journal of East China Normal University (Natural Science), 2017(5): 52-65. [12] KALIYAR R K. A multi-layer bidirectional transformer encoder for pre-trained word embedding: a survey of BERT[C]//Proceedings of the 10th International Conference on Cloud Computing, Data Science & Engineering. Piscataway: IEEE, 2020: 336-340. [13] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. [14] SEZERER E, TEKIR S. A survey on neural word embeddings[J]. arXiv:2110.01804, 2021. [15] WANG Y, HOU Y, CHE W, et al. From static to dynamic word representations: a survey[J]. International Journal of Machine Learning and Cybernetics, 2020, 11: 1611-1630. [16] CHEN D, MANNING C D. A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 740-750. [17] CHEN Y, PEROZZI B, AL-RFOU R, et al. The expressive power of word embeddings[J]. arXiv:1301.3226, 2013. [18] STICKLAND A C, MURRAY I. BERT and PALs: projected attention layers for efficient adaptation in multi-task learning[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 5986-5995. [19] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 2790-2799. [20] LIN T, CHONGHUI G, JINGFENG C. Review of Chinese word segmentation studies[J]. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 1-17. [21] 黄昌宁, 赵海. 中文分词十年回顾[J]. 中文信息学报, 2007, 21(3): 8-19. HUANG C N, ZHAO H. Chinese word segmentation: a decade review[J]. Journal of Chinese Information Processing, 2007, 21(3): 8-19. [22] 孙茂松, 左正平, 黄昌宁. 汉语自动分词词典机制的实验研究[J]. 中文信息学报, 2000, 14(1): 1-6. SUN M S, ZUO Z P, HUANG C N. An experimental study on dictionary mechanism for Chinese word segmentation[J]. Journal of Chinese Information Processing, 2000, 14(1): 1-6. [23] PENG F, FENG F, MCCALLUM A. Chinese segmentation and new word detection using conditional random fields[C]//Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Aug 23-27, 2004: 562-568. [24] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12: 2493-2537. [25] CAI D, ZHAO H. Neural word segmentation learning for Chinese[J]. arXiv:1606.04300, 2016. [26] GU?L?EHRE ?, AHN S, NALLAPATI R, et al. Pointing the unknown words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 140-149. [27] WU Y, SCHUSTER M, CHEN Z, et al. Google’s neural machine translation system: bridging the gap between human and machine translation[J]. arXiv:1609.08144, 2016. [28] GAGE P. A new algorithm for data compression[J]. The C Users Journal, 1994, 12(2): 23-38. [29] KIM Y, JERNITE Y, SONTAG D, et al. Character-aware neural language models[C]//Proceedings of the 2016 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 2741-2749. [30] DONG L, YANG N, WANG W, et al. Unified language model pre-training for natural language understanding and generation[C]//Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 13042-13054. [31] JOSHI M, CHEN D, LIU Y, et al. SpanBERT: improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8:64-77. [32] WANG W, BI B, YAN M, et al. StructBERT: incorporating language structures into pre-training for deep language understanding[J]. arXiv:1908.04577, 2019. [33] LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[J]. arXiv:1909.11942, 2019. [34] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]// Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 5754-5764. [35] KUDO T, RICHARDSON J. SentencePiece: a simple and language independent subword tokenizer and detokenizer for neural text processing[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2018: 66-71. [36] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[R]. OpenAI, 2018. [37] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9. [38] CONNEAU A, LAMPLE G. Cross-lingual language model pretraining[C]//Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 7057-7067. [39] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019. [40] SONG K, TAN X, QIN T, et al. MASS: masked sequence to sequence pre-training for language generation[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 5926-5936. [41] BENGIO Y. Neural net language models[J]. Scholarpedia, 2008, 3(1): 3881. [42] BLITZER J, PEREIRA F, WEINBERGER K Q, et al. Hierarchical distributed representations for statistical language modeling[C]//Advances in Neural Information Processing Systems 17, Vancouver, Dec 13-18, 2004: 185-192. [43] JELINEK F. Interpolated estimation of Markov source parameters from sparse data[C]//Proceeding of the 1980 Workshop on Pattern Recognition in Practice, 1980: 381-397. [44] KATZ S. Estimation of probabilities from sparse data for the language model component of a speech recognizer[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 400-401. [45] HUANG E H, SOCHER R, MANNING C D, et al. Improving word representations via global context and multiple word prototypes[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2012: 873-882. [46] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[C]//Advances in Neural Informa-tion Processing Systems 13. Cambridge: MIT Press, 2001: 932-938. [47] JOSHUA T, GOODMAN J. A bit of progress in language modeling extended version: MSR-TR-2001-72[R]. 2001. [48] MIKOLOV T. Statistical language models based on neural networks[R]. 2012. [49] MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model[J]. Interspeech, 2010, 2(3): 1045-1048. [50] SCHMIDHUBER J, HOCHREITER S. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [51] SUN Y, WANG S, LI Y, et al. ERNIE: enhanced representa-tion through knowledge integration[J]. arXiv:1904.09223, 2019. [52] CLARK K, LUONG M T, LE Q V, et al. ELECTRA: pre-training encoders as discriminators rather than generators[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020:26-30. [53] LIU W, ZHOU P, ZHAO Z, et al. K-BERT: enabling language representation with knowledge graph[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 2901-2908. [54] LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7871-7880. [55] BI B, LI C, WU C, et al. PALM: pre-training an autoencoding & autoregressive language model for context-conditioned generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 8681-8691. [56] LUND K, BURGESS C. Producing high-dimensional semantic spaces from lexical co-occurrence[J]. Behavior Research Methods, Instruments, & Computers, 1996, 28(2): 203-208. [57] DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407. [58] ROHDE D L, GONNERMAN L M, PLAUT D C. An improved model of semantic similarity based on lexical co-occurrence[J]. Communications of the ACM, 2006, 8: 627-633. [59] MNIH A, KAVUKCUOGLU K. Learning word embeddings efficiently with noise-contrastive estimation[C]//Advances in Neural Information Processing Systems 26. Cambridge:MIT Press, 2013: 2265-2273. [60] QI Y, SACHAN D S, FELIX M, et al. When and why are pre-trained word embeddings useful for neural machine translation?[J]. arXiv:1804.06323, 2018. [61] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014. [62] HILL F, CHO K, JEAN S, et al. The representational geometry of word meanings acquired by neural machine translation models[J]. Machine Translation, 2017, 31: 3-18. [63] MCCANN B, BRADBURY J, XIONG C, et al. Learned in translation: contextualized word vectors[C]//Advances in Neural Information Processing Systems 30. Cambridge:MIT Press, 2017: 6294-6305. [64] QIU Y, LI H, LI S, et al. Revisiting correlations between intrinsic and extrinsic evaluations of word embeddings[C]//Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data: 17th China National Conference, and 6th International Symposium, Shanghai, Oct 19-21, 2018: 209-221. [65] JOULIN A, GRAVE E, MIKOLOV P B T. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistic. Stroudsburg: ACL, 2017: 427. [66] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems 26. Cambridge: MIT Press, 2013: 3111-3119. [67] ZHU Y, KIROS R, ZEMEL R, et al. Aligning books and movies: towards story-like visual explanations by watching movies and reading books[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 19-27. [68] TRINH T H, LE Q V. A simple method for commonsense reasoning[J]. arXiv:1806.02847, 2018. [69] CERA D, YANGA Y, KONGA S Y, et al. Universal sentence encoder[J]. arXiv:1803.11175, 2018. [70] YOU Y, LI J, HSEU J, et al. Reducing BERT pre-training time from 3 days to 76 minutes[J]. arXiv:1904.00962, 2019. [71] SHOEYBI M, PATWARY M, PURI R, et al. Megatron-LM: training multi-billion parameter language models using model parallelism[J]. arXiv:1909.08053, 2019. [72] RAJBHANDARI S, RASLEY J, RUWASE O, et al. ZeRO: memory optimization towards training a trillion parameter models[J]. arXiv:1910.02054, 2019. [73] QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. [74] BAEVSKI A, EDUNOV S, LIU Y, et al. Cloze-driven pretraining of self-attention networks[J]. arXiv:1903.07785, 2019. [75] TAYLOR W L. “Cloze procedure”: a new tool for measuring readability[J]. Journalism Quarterly, 1953, 30(4): 415-433. [76] DAI Z, YANG Z, YANG Y, et al. Transformer-XL: attentive language models beyond a fixed-length context[C]//Pro-ceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2978-2988. [77] CUI Y, CHE W, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[J]. arXiv:2004.13922, 2020. [78] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [79] XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//Proceedings of the 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, Arras, Jun 27-30, 2017: 428-438. [80] DONG Z, DONG Q, HAO C. Hownet and its computation of meaning[C]//Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, Aug 23-27, 2010: 53-56. [81] SUN Y, WANG S, LI Y, et al. Ernie 2.0: a continual pre-training framework for language understanding[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020: 8968-8975. [82] PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: a review[J]. Neural Networks, 2019, 113: 54-71. [83] YAMADA I, ASAI A, SHINDO H, et al. LUKE: deep cont-extualized entity representations with entity-aware self-attention[J]. arXiv:2010.01057, 2020. [84] MENGGE X, YU B, ZHANG Z, et al. Coarse-to-fine pre-training for named entity recognition[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6345-6354. [85] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, Dec 6-12, 2020: 1877-1901. [86] SANH V, DEBUT L, CHAUMOND J, et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[J]. arXiv:1910.01108, 2019. [87] SUN S, CHENG Y, GAN Z, et al. Patient knowledge distilla-tion for BERT model compression[J]. arXiv:1908.09355, 2019. [88] WANG W, WEI F, DONG L, et al. MiniLM: deep self-attention distillation for task-agnostic compression of pre-trained transformers[C]//Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, Dec 6-12, 2020: 5776-5788. [89] JIAO X, YIN Y, SHANG L, et al. TinyBERT: distilling BERT for natural language understanding[J]. arXiv:1909.10351, 2019. [90] SCHNABEL T, LABUTOV I, MIMNO D, et al. Evaluation methods for unsupervised word embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 298-307. [91] BARONI M, DINU G, KRUSZEWSKI G. Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 238-247. [92] FINKELSTEIN L, GABRILOVICH E, MATIAS Y, et al. Placing search in context: the concept revisited[C]//Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, May 1-5, 2001: 406-414. [93] BRUNI E, TRAN N K, BARONI M. Multimodal distribu-tional semantics[J]. Journal of Artificial Intelligence Research, 2014, 49: 1-47. [94] FARUQUI M, DYER C. Community evaluation and exchange of word vectors at wordvectors.org[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: ACL, 2014: 19-24. [95] TURNEY P D. A uniform approach to analogies, synonyms, antonyms, and associations[J]. arXiv:0809.0124, 2008. [96] ARORA S, MAY A, ZHANG J, et al. Contextual embeddings: when are they worth it?[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg: ACL, 2020: 2650-2663. [97] TURIAN J, RATINOV L, BENGIO Y. Word representations: a simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2010: 384-394. [98] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. [99] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recom-mendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM Interna-tional Conference on Information and Knowledge Manage-ment, Beijing, Nov 1-7, 2019: 1441-1450. [100] LOUIZOS C, WELLING M, KINGMA D P. Learning sparse neural networks through L0 regularization[J]. arXiv:1712.01312, 2017. [101] SHEN S, DONG Z, YE J, et al. Q-BERT: Hessian based ultra low precision quantization of BERT[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020: 8815-8821. [102] ZHANG Y, TI?O P, LEONARDIS A, et al. A survey on neural network interpretability[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(5): 726-742. [103] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: an overview of interpretability of machine learning[C]//Proceedings of the 5th IEEE International Conference on Data Science and Advanced Analytics, Turin, Oct 1-3, 2018: 80-89. [104] 华阳. 基于多模态词向量的语句距离计算方法[D]. 哈尔滨: 哈尔滨工业大学, 2018. HUA Y. Computational methods of sentence distance based on multi-modal word embedding[D]. Harbin: Harbin Institute of Technology, 2018. [105] FENG Y, LAPATA M. Topic models for image annotation and text illustration[C]//Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Los Angeles, Jun 2-4, 2010: 831-839. [106] KIROS R, SALAKHUTDINOV R, ZEMEL R. Multimodal neural language models[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning, Beijing, Jun 21-26, 2014: 595-603. [107] KIELA D, CLARK S. Multi-and cross-modal semantics beyond vision: grounding in auditory perception[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 2461-2470. [108] COLLELL G, ZHANG T, MOENS M F. Imagined visual representations as multimodal embeddings[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017: 4378-4384. [109] MAO J, XU J, JING K, et al. Training and evaluating multimodal word embeddings with large-scale web annotated images[C]//Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016: 442-450. |
[1] | WANG Yongchao, ZHOU Lingzhi, ZHAO Yaping, XU Duanqing. Poetry Generation Algorithm with Automatic Expansion of Keyword Semantic Information [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1387-1394. |
[2] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[3] | ZHANG Heyi, WANG Xin, HAN Lifan, LI Zhao, CHEN Zirui, CHEN Zhe. Research on Question Answering System on Joint of Knowledge Graph and Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388. |
[4] | PENG Huang, ZENG Weixin, ZHOU Jie, TANG Jiuyang, ZHAO Xiang. Contrast Research of Representation Learning in Entity Alignment Based on Graph Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2343-2357. |
[5] | PAN Yudai, ZHANG Lingling, CAI Zhongmin, ZHAO Tianzhe, WEI Bifan, LIU Jun. Differentiable Rule Extraction with Large Language Model for Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2403-2412. |
[6] | LI Yuan, MA Xinyu, YANG Guoli, ZHAO Huiqun, SONG Wei. Survey of Causal Inference for Knowledge Graphs and Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. |
[7] | YANG Bo, SUN Xiaohu, DANG Jiayi, ZHAO Haiyan, JIN Zhi. Named Entity Recognition Method of Large Language Model for Medical Question Answering System [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2389-2402. |
[8] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[9] | HAN Yi, QIAO Linbo, LI Dongsheng, LIAO Xiangke. Review of Knowledge-Enhanced Pre-trained Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1439-1461. |
[10] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[11] | CHEN Gongchi, RONG Huan, MA Tinghuai. Abstractive Text Summarization Model with Coherence Reinforcement and No Ground Truth Dependency [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 621-636. |
[12] | HU Kang, XI Xuefeng, CUI Zhiming, ZHOU Yueyao, QIU Yajin. Survey of Deep Learning Table-to-Text Generation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2487-2504. |
[13] | ZHANG Chunpeng, GU Xiwu, LI Ruixuan, LI Yuhua, LIU Wei. Construction Method for Financial Personal Relationship Graphs Using BERT [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 137-143. |
[14] | CHEN Deguang, MA Jinlin, MA Ziping, ZHOU Jie. Review of Pre-training Techniques for Natural Language Processing [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1359-1389. |
[15] | WANG Yurong, LIN Min, LI Yanling. Research of BERT Cross-Lingual Word Embedding Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1405-1417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/