Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 137-143.DOI: 10.3778/j.issn.1673-9418.2008096
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Chunpeng, GU Xiwu, LI Ruixuan+(), LI Yuhua, LIU Wei
Received:
2020-09-07
Revised:
2021-07-02
Online:
2022-01-01
Published:
2021-07-15
About author:
ZHANG Chunpeng, born in 1995, M.S. can-didate. His research interests include natural language processing and deep learning.Supported by:
通讯作者:
+ E-mail: rxli@hust.edu.cn作者简介:
张纯鹏(1995—),男,山东德州人,硕士研究生,主要研究方向为自然语言处理、深度学习。基金资助:
CLC Number:
ZHANG Chunpeng, GU Xiwu, LI Ruixuan, LI Yuhua, LIU Wei. Construction Method for Financial Personal Relationship Graphs Using BERT[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 137-143.
张纯鹏, 辜希武, 李瑞轩, 李玉华, 刘伟. BERT辅助金融领域人物关系图谱构建[J]. 计算机科学与探索, 2022, 16(1): 137-143.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2008096
统计指标 | 数量 |
---|---|
人员实体总数 | 1 694 |
总字符数 | 597 157 |
人员属性实体总数 | 86 066 |
句子总数 | 14 666 |
Table 1 Information of personnel attribute entity labeling dataset
统计指标 | 数量 |
---|---|
人员实体总数 | 1 694 |
总字符数 | 597 157 |
人员属性实体总数 | 86 066 |
句子总数 | 14 666 |
统计指标 | 数量 |
---|---|
人员实体总数 | 1 694 |
教育经历事件实例总数 | 2 407 |
任职经历事件实例总数 | 26 756 |
同事关系总数 | 52 202 |
校友关系总数 | 2 264 |
Table 2 Information of hierarchical personnel templates dataset
统计指标 | 数量 |
---|---|
人员实体总数 | 1 694 |
教育经历事件实例总数 | 2 407 |
任职经历事件实例总数 | 26 756 |
同事关系总数 | 52 202 |
校友关系总数 | 2 264 |
方法 | 查准率 | 查全率 | F1值 |
---|---|---|---|
启发式规则 | 0.811 8 | 0.776 7 | 0.793 9 |
BiLSTM-CRF | 0.901 5 | 0.921 3 | 0.911 3 |
BERT | 0.921 1 | 0.934 0 | 0.927 5 |
Table 3 Experimental results of personnel attribute entity extraction
方法 | 查准率 | 查全率 | F1值 |
---|---|---|---|
启发式规则 | 0.811 8 | 0.776 7 | 0.793 9 |
BiLSTM-CRF | 0.901 5 | 0.921 3 | 0.911 3 |
BERT | 0.921 1 | 0.934 0 | 0.927 5 |
事件类型 | 方法 | 查准率 | 查全率 | F1 | 正确率 |
---|---|---|---|---|---|
任职经历 | BERT-Template | 0.82 | 0.92 | 0.87 | 0.86 |
BiLSTM-CRF | 0.84 | 0.84 | 0.84 | 0.84 | |
教育经历 | BERT-Template | 0.81 | 0.91 | 0.86 | 0.82 |
BiLSTM-CRF | 0.78 | 0.89 | 0.83 | 0.79 |
Table 4 Event classification results
事件类型 | 方法 | 查准率 | 查全率 | F1 | 正确率 |
---|---|---|---|---|---|
任职经历 | BERT-Template | 0.82 | 0.92 | 0.87 | 0.86 |
BiLSTM-CRF | 0.84 | 0.84 | 0.84 | 0.84 | |
教育经历 | BERT-Template | 0.81 | 0.91 | 0.86 | 0.82 |
BiLSTM-CRF | 0.78 | 0.89 | 0.83 | 0.79 |
关系类型 | 方法 | 查准率 | 查全率 | F1 |
---|---|---|---|---|
同事关系 | 启发式规则 | 0.69 | 0.66 | 0.67 |
BERT-Template | 0.76 | 0.73 | 0.74 | |
BiLSTM-CRF | 0.74 | 0.70 | 0.72 | |
校友关系 | 启发式规则 | 0.49 | 0.52 | 0.50 |
BERT-Template | 0.72 | 0.73 | 0.72 | |
BiLSTM-CRF | 0.69 | 0.72 | 0.70 |
Table 5 Experiment results of personnel entity relationship discovery and extraction
关系类型 | 方法 | 查准率 | 查全率 | F1 |
---|---|---|---|---|
同事关系 | 启发式规则 | 0.69 | 0.66 | 0.67 |
BERT-Template | 0.76 | 0.73 | 0.74 | |
BiLSTM-CRF | 0.74 | 0.70 | 0.72 | |
校友关系 | 启发式规则 | 0.49 | 0.52 | 0.50 |
BERT-Template | 0.72 | 0.73 | 0.72 | |
BiLSTM-CRF | 0.69 | 0.72 | 0.70 |
[1] | SANG E T K, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity reco-gnition[C]// Proceedings of the 7th Conference on Natural Language Learning, Edmonton, May 31-Jun 1, 2003. Strou-dsburg: ACL, 2003: 142-147. |
[2] | KUMAR S. A survey of deep learning methods for relation extraction[J]. arXiv:1705.03645, 2017. |
[3] | DODDINGTON G R, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]// Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, May 26-28, 2004: 1-4. |
[4] | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Asso-ciation for Computational Linguistics, Baltimore, Jun 22-27, 2014. Stroudsburg: ACL, 2014: 655-665. |
[5] | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[J]. arXiv:1409.2329, 2014. |
[6] | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF mo-dels for sequence tagging[J]. arXiv:1508.01991, 2015. |
[7] | STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]// Proceedings of the 2017 Conference on Empirical Met-hods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 2670-2680. |
[8] | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Langu-age Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg:ACL, 2018: 2227-2237. |
[9] | RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2020-05-24]. https://s3-us-west-2.amazon-aws.com/openai-assets/researchcovers/languageunsupervised/ language understanding paper.pdf. |
[10] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-putational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. |
[11] | 郭喜跃, 何婷婷, 胡小华, 等. 基于句法语义特征的中文实体关系抽取[J]. 中文信息学报, 2014, 28(6):183-189. |
GUO X Y, HE T T, HU X H, et al. Chinese entity relationship extraction based on syntactic and semantic features[J]. Journal of Chinese Information Processing, 2014, 28(6):183-189. | |
[12] | ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural net-works[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1753-1762. |
[13] | KATIYAR A, CARDIE C. Going out on a limb: joint extraction of entity mentions and relations without depen-dency trees[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928. |
[14] | DIB F, LINDBERG S, NUGUES P. Extraction of career profiles from Wikipedia[C]// Proceedings of the 1st Con-ference on Biographical Data in a Digital World 2015, Amsterdam, Apr 9, 2015: 33-38. |
[15] | PLUM A, ZAMPIERI M, ORASAN C, et al. Large-scale data harvesting for biographical data[J]//Proceedings of the 3rd Conference on Biographical Data in a Digital World, Varna, 2019: 1-12. |
[16] | YANG H, CHEN Y B, LIU K, et al. DCFEE: a document-level Chinese financial event extraction system based on automatically labeled training data[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 50-55. |
[17] | LI D Y, HUANG L F, JI H, et al. Biomedical event extraction based on knowledge-driven tree-LSTM[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 1421-1430. |
[18] |
ZHANG T T, JI H, SIL A. Joint entity and event extraction with generative adversarial imitation learning[J]. Data Intelligence, 2019, 1(2):99-120.
DOI URL |
[19] | ZENG Y, FENG Y S, MA R, et al. Scale up event extraction learning via automatic training data generation[C]// Pro-ceedings of the 32nd AAAI Conference on Artificial Int-elligence, the 30th Innovative Applications of Artificial Int-elligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6045-6052. |
[20] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | HAN Yi, QIAO Linbo, LI Dongsheng, LIAO Xiangke. Review of Knowledge-Enhanced Pre-trained Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1439-1461. |
[6] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[9] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[10] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[11] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[12] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[13] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[14] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[15] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/