Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (1): 44-57.DOI: 10.3778/j.issn.1673-9418.2307048
• Frontiers·Surveys • Previous Articles Next Articles
WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang
Online:
2024-01-01
Published:
2024-01-01
王昆,郭威,王尊严,韩文强
WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57.
王昆, 郭威, 王尊严, 韩文强. 赤足足迹识别研究综述[J]. 计算机科学与探索, 2024, 18(1): 44-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2307048
[1] KENNEDY R B, PRESSMAN I S, CHEN S, et al. Statis-tical analysis of barefoot impressions[J]. Journal of Forensic Science, 2003, 48(1): 1-9. [2] 许爱东, 糜忠良. 足迹鉴定技术理论与实务研究[M]. 北京: 法律出版社, 2018: 1-14. XU A D, MI Z L. Research on the theory and practice of footprint identification technology[M]. Beijing: Law Press, 2018: 1-14. [3] 金益锋, 于霄雪, 王丽, 等. 基于多尺度特征的赤足足迹图像人身识别算法[J]. 刑事技术, 2022, 47(6): 587-592. JIN Y F, YU X X, WANG L, et al. Algorithm of personal recognition based on multi-scale features from barefoot foot-print image[J]. Forensic Science and Technology, 2022, 47(6): 587-592. [4] IBRAHIM Y I, ALHAMDANI I M. A hyprid technique for human footprint recognition[J]. International Journal of Electrical and Computer Engineering, 2019, 9(5): 4060-4068. [5] 方敏. 基于小样本学习的赤足足迹分类方法研究[D]. 合肥: 安徽大学, 2020. FANG M. Research on bare footprint classification method based on small sample learning[D]. Hefei: Anhui Univer-sity, 2020. [6] 汪桐生. 赤足足迹压力图像的检索算法研究[D]. 合肥: 安徽大学, 2021. WANG T S. Research on retrieval algorithm of barefoot footprint pressure image[D]. Hefei: Anhui University, 2021. [7] 王申. 足迹分析检验系统的设计与实验[D]. 扬州: 扬州大学, 2019. WANG S. Design and experiment of footprint analysis and inspection system[D]. Yangzhou: Yangzhou University, 2019. [8] 鲍文霞, 茅丽丽, 王年, 等. 基于注意力双分支网络的跨模态足迹检索[J]. 东南大学学报(自然科学版), 2021, 51(5): 914-922. BAO W X, MAO L L, WANG N, et al. Cross-modal foot-print retrieval based on the two-branch CNN with attention[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(5): 914-922. [9] WANG X N, WANG H Y, CHENG Q, et al. Single 2D pre-ssure footprint based person identification[C]//Proceedings of the 2017 IEEE International Joint Conference on Bio-metrics, Denver, Oct 1-4, 2017. Piscataway: IEEE, 2017: 413-419. [10] 鲍文霞, 王云飞, 王年, 等. 基于度量学习核函数的光学足迹图像识别算法[J]. 华中科技大学学报(自然科学版), 2020, 48(11): 11-16. BAO W X, WANG Y F, WANG N, et al. Identification algorithm of optical footprint image based on metric learn-ing kernel function[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(11): 11-16. [11] 史力民. 足迹检验技术规范[M]. 北京: 中国人民公安大学出版社, 2012: 1-57. SHI L M. Technical specifications for footprints examin-ation[M]. Beijing: People??s Public Security University of China Press, 2012: 1-57. [12] 雷航, 童莉, 平西建. 平面赤足迹特征分析与身份识别方法[J]. 计算机辅助设计与图形学学报,?2008, 20(5): 659-664. LEI H, TONG L, PING X J. Feature analysis and ident-ification method of plane bare footprint[J]. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(5): 659-664. [13] 童莉. 平面赤足迹形状分析与身份鉴别研究[D]. 郑州: 解放军信息工程大学, 2007. TONG L. Study on shape analysis and identity identifi-cation of plane bare footprint[D]. Zhengzhou: The PLA Information Engineering University, 2007. [14] 李磊. 平面赤足迹形态特征提取与分析[D]. 郑州: 解放军信息工程大学, 2006. LI L. Extraction and analysis of morphological features of plane bare footprint[D]. Zhengzhou: The PLA Information Engineering University, 2006. [15] 王永栋, 顾士清, 党素琴, 等. 基于重压面形状分析的足迹识别系统的研究[C]//第十四届全国图象图形学学术会议论文集. 北京: 清华大学出版社, 2008: 794-797. WANG Y D, GU S Q, DANG S Q, et al. Research on foot-print recognition system based on shape analysis of heavy pressure surface[C]//Proceedings of the 14th National Conference on Image Graphics. Beijing: Tsinghua Univer-sity Press, 2008: 794-797. [16] 王鹏鹏. 基于相似度分析的2D光学赤足足迹识别方法研究[D]. 合肥: 安徽大学, 2021. WANG P P. Research on 2D optical barefoot footprint recognition method based on similarity analysis[D]. Hefei: Anhui University, 2021. [17] 鲍文霞, 胡伟, 王年, 等. 基于深度中心匹配哈希网络的足迹压力图像检索[J]. 华中科技大学学报(自然科学版), 2023(9): 81-87. BAO W X, HU W, WANG N, et al. Footprint pressure image retrieval based on deep center matching hash network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023(9): 81-87. [18] 王鹏鹏, 吴洛天, 汪曙光, 等. 基于关系网络的赤足足迹识别[J]. 传感器与微系统, 2021, 40(4): 126-130. WANG P P, WU L T, WANG S G, et al. Bare footprint recognition based on relation network[J]. Transducer and Microsystem Technologies, 2021, 40(4): 126-130. [19] 梁栋, 高玮玮, 张艳, 等. 基于足底压力图像的静态触觉步态识别[J]. 华中科技大学学报(自然科学版), 2013, 41(10): 25-29. LIANG D, GAO W W, ZHANG Y, et al. Static tactile gait recognition based on plantar pressure image[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(10): 25-29. [20] 鲍文霞, 茅丽丽, 王年, 等. 非局部注意力双分支网络的跨模态赤足足迹检索[J]. 中国图象图形学报, 2022, 27(7): 2199-2213. BAO W X, MAO L L, WANG N, et al. Non-local attention dual-branch network based cross-modal barefoot footprint retrieval[J]. Journal of Image and Graphics, 2022, 27(7): 2199-2213. [21] PAWARA P, OKAFOR E, SCHOMAKER L, et al. Data augmentation for plant classification[C]//Proceedings of the 2017 International Conference on Advanced Concepts for Intelligent Vision Systems, Brussels, Sep 18-21, 2017. Cham: Springer, 2017: 615-626. [22] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 13001-13008. [23] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [24] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36. ZHENG Y P, LI G Y, LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20-36. [25] 王颢. 深度学习在图像识别中的研究与应用[J]. 科技视界, 2020(24): 37-38. WANG H. Research and application of deep learning in image recognition[J]. Science & Technology Vision, 2020(24): 37-38. [26] BAO W X, WANG Y F, WANG N, et al. Optical footprint image recognition algorithm based on metric learning and SVM[C]//Proceedings of the 2020 International Conference on Computer Engineering and Application, Sanya, Oct 20-22, 2020: 864-868. [27] SELESNICK I W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. [28] ZHANG L, LI D, ZHONG C. Collaborative optimization of clustering by fuzzy c-means and weight determination by ReliefF[C]//Proceedings of the 2009 6th International Conf-erence on Fuzzy Systems and Knowledge Discovery, Tianjin, Aug 14-16, 2009: 454-459. [29] AHONEN T, RAHTU E, OJANSIVU V, et al. Recognition of blurred faces using local phase quantization[C]//Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, Dec 8-11, 2008: 1-4. [30] XIAO Y, CAO Z G, WANG L. Local phase quantization plus: a principled method for embedding local phase quantization into Fisher vector for blurred image recog-nition[J]. Information Sciences, 2017, 420: 77-95. [31] HART P E, STORK D G, DUDA R O. Pattern classification[M]. Hoboken: Wiley, 2000: 1-30. [32] BLANCO-DELGADO N, DE HAAG M U. Multipath analysis using code-minus-carrier for dynamic testing of GNSS rece-ivers[C]//Proceedings of the 2011 International Conference on Localization and GNSS, Tampere, Jun 29-30, 2011: 25-30. [33] 汪飞跃, 姚志明, 许胜强, 等. 基于柔性力敏传感器的左右脚动态识别方法[J]. 传感技术学报, 2015, 28(7): 964-971. WANG F Y, YAO Z M, XU S Q, et al. Dynamic footprint recognition method based on flexible force-sensitive sensor[J]. Chinese Journal of Sensors and Actuators, 2015, 28(7): 964-971. [34] HEYDARZADEH M, BIRJANDTALAB J, POUYAN M B, et al. Gaits analysis using pressure image for subject identification[C]//Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, Feb 16-19, 2017: 333-336. [35] 张艳, 王乔, 王年, 等. 基于多模特征的足迹识别算法[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 73-78. ZHANG Y, WANG Q, WANG N, et al. Footprint recog-nition algorithm based on multi-modal features[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(5): 73-78. [36] 孙永胜. 基于多尺度重排填充机制的足迹识别方法研究[D]. 合肥: 安徽大学, 2022. SUN Y S. Research on footprint recognition method based on multi-scale rearrangement and filling mechanism[D]. Hefei: Anhui University, 2022. [37] ZHANG J. Seesawfacenets: sparse and robust face verific-ation model for mobile platform[J]. arXiv:1908.09124, 2019. [38] 郑治. 基于卷积神经网络的赤足足迹生物信息挖掘技术研究[D]. 长春: 吉林大学, 2022. ZHENG Z. Research on bare footprint bioinformatics mining technology based on convolutional neural network[D]. Changchun: Jilin University, 2022. [39] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018: 116-131. [40] 朱明, 江畅, 于小勇, 等. 基于深度度量学习的足迹图像检索算法[J]. 刑事技术, 2023, 48(3): 283-291. ZHU M, JIANG C, YU X Y, et al. Footprint image retrieval algorithm based on depth metric learning[J]. Forensic Science and Technology, 2023, 48(3): 283-291. [41] DAI Z, CHEN M, GU X, et al. Batch dropblock network for person re-identification and beyond[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019: 3691-3701. [42] KEATSAMARN T, PINTAVIROOJ C. Footprint identifi-cation using deep learning[C]//Proceedings of the 2018 11th Biomedical Engineering International Conference, Aachen, May 23-25, 2018: 1-4. [43] 许秋菊. 自然行走和负重条件下的赤足压力图像识别算法研究[D]. 合肥: 安徽大学, 2022. XU Q J. Research on barefoot pressure image recognition algorithm under natural walking and load-bearing condi-tions[D]. Hefei: Anhui University, 2022. [44] 朱明, 汪桐生, 王年, 等. 基于多尺度自注意卷积的足迹压力图像检索算法[J]. 模式识别与人工智能, 2020, 33(12): 1097-1103. ZHU M, WANG T S, WANG N, et al. Footprint pressure image retrieval algorithm based on multi-scale self-attention convolution[J]. Pattern Recognition and Artificial Intellig-ence, 2020, 33(12): 1097-1103. [45] 瞿金杰. 基于卷积神经网络的压力赤足足迹识别算法研究[D]. 合肥: 安徽大学, 2021. QU J J. Research on recognition algorithm of pressure barefoot footprint based on convolutional neural network[D]. Hefei: Anhui University, 2021. [46] CHANG C H, YU C H, CHEN S Y, et al. KG-GAN: knowl-edge-guided generative adversarial networks[J]. arXiv:1905. 12261, 2019. [47] 高梓健. 基于多级融合分布图网络的赤足压力足迹分类方法研究[D]. 合肥: 安徽大学, 2022. GAO Z J. Research on barefoot pressure footprint classif-ication method based on multi-level fusion distribution net-work[D]. Hefei: Anhui University, 2022. [48] 鲍文霞, 瞿金杰, 王年, 等. 基于空间聚合加权卷积神经网络的力触觉足迹识别[J]. 东南大学学报(自然科学版), 2020, 50(5): 959-964. BAO W X, QU J J, WANG N, et al. Force-tactile footprint recognition based on spatial aggregation weighted convo-lutional neural network[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 959-964. [49] 吴正建. 串行足底压力图像的检索算法研究[D]. 合肥: 安徽大学, 2022. WU Z J. Research on retrieval algorithm of serial plantar pressure image[D]. Hefei: Anhui University, 2022. [50] WENXIA B, WEI H, Dong L, et al. Deep supervised binary hash codes for footprint image retrieval[C]//Proceedings of the 2020 International Conference on Intelligent Compu-ting and Human-Computer Interaction, Sanya, Dec 4-6, 2020: 138-141. [51] 胡伟. 基于卷积神经网络的赤足足迹检索算法研究[D]. 合肥: 安徽大学, 2022. HU W. Research on bare footprint retrieval algorithm based on convolutional neural network[D]. Hefei: Anhui Unive-rsity, 2022. [52] 丁汉, 唐云祁, 郭威. 自然行走状态下的足底压力稳定性研究[J]. 计算机技术与发展, 2017, 27(4): 153-156. DING H, TANG Y Q, GUO W. Research on stability of plantar pressure in normal human walking condition[J]. Computer Technology and Development, 2017, 27(4): 153-156. |
[1] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
[2] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[3] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
[4] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[5] | ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074. |
[6] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[7] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[8] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[9] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[10] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[11] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[12] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[13] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[14] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[15] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/