[1] ZARANDI A K, MIRZAEI S. A survey of aspect-based sentiment analysis classification with a focus on graph neural network methods[J]. Multimedia Tools and Applications, 2024, 83(19): 56619-56695.
[2] 商容轩, 张斌, 米加宁. 基于BRNN的政务APP评论端到端方面级情感分析方法[J]. 数据分析与知识发现, 2022, 6(S1): 364-375.
SHANG R X, ZHANG B, MI J N. End-to-end aspect-level sentiment analysis for E-government applications based on BRNN[J]. Data Analysis and Knowledge Discovery, 2022, 6(S1): 364-375.
[3] LIU B W, BLASCH E, CHEN Y, et al. Scalable sentiment classification for big data analysis using na?ve Bayes classifier[C]//Proceedings of the 2013 IEEE International Conference on Big Data. Piscataway: IEEE, 2013: 99-104.
[4] HUANG B X, CARLEY K. Parameterized convolutional neural networks for aspect level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 1091-1096.
[5] LIU Y F, QIN Z C, LI P Y, et al. Stock volatility prediction using recurrent neural networks with sentiment analysis[C]//Advances in Artificial Intelligence: From Theory to Practice-the 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems. Cham: Springer, 2017: 192-201.
[6] CHEN C T, ZHUO R, REN J T. Gated recurrent neural network with sentimental relations for sentiment classification[J]. Information Sciences, 2019, 502: 268-278.
[7] WANG J, YU L C, LAI K R, et al. Tree-structured regional CNN-LSTM model for dimensional sentiment analysis[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 581-591.
[8] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4567-4577.
[9] SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5678-5687.
[10] ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549.
[11] YUAN L, WANG J, YU L C, et al. Graph attention net-work with memory fusion for aspect-level sentiment analysis[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2020: 27-36.
[12] SONG Y , WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[EB/OL]. [2024-08-15]. https://arxiv.org/abs/1902.09314.
[13] YAN H, DAI J Q, JI T, et al. A unified generative framework for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2416-2429.
[14] ZHANG K, ZHANG K, ZHANG M D, et al. Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3599-3610.
[15] ZHAO P L, HOU L L, WU O. Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 193: 105443.
[16] ZHANG Z, ZHOU Z L, WANG Y N. SSEGCN: syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4916-4925.
[17] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238.
[18] YUAN L, WANG J, YU L C, et al. Syntactic graph attention network for aspect-level sentiment analysis[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(1): 140-153.
[19] PHAN M H, OGUNBONA P O. Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3211-3220.
[20] CHEN Y X, YAO J T. Sentiment analysis using part-of-speech-based feature extraction and game-theoretic rough sets[C]//Proceedings of the 2021 International Conference on Data Mining. Piscataway: IEEE, 2022: 110-117.
[21] ALI S F, MASOOD N. Evaluation of adjective and adverb types for effective Twitter sentiment classification[J]. PLoS One, 2024, 19(5): e0302423.
[22] 孔兰若. 现代汉语情感形容词研究[J]. 现代语文(语言研究版), 2013(4): 57-59.
KONG L R. A study on emotional adjectives in modern Chinese[J]. Modern Chinese (Edition of Language Research), 2013(4): 57-59.
[23] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[24] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[25] JIANG Q N, CHEN L, XU R F, et al. A challenge dataset and effective models for aspect-based sentiment analysis[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-national Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6279-6284. |