
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1217-1229.DOI: 10.3778/j.issn.1673-9418.2406021
• Theory·Algorithm • Previous Articles Next Articles
ZHOU Jiaxuan, LIU Xianhui, ZHAO Xiaodong, HOU Wenlong, ZHAO Weidong
Online:2025-05-01
Published:2025-04-28
周家旋,柳先辉,赵晓东,侯文龙,赵卫东
ZHOU Jiaxuan, LIU Xianhui, ZHAO Xiaodong, HOU Wenlong, ZHAO Weidong. Self-Supervised Knowledge-Aware Recommendation Model Integrating Adaptive Hypergraph[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1217-1229.
周家旋, 柳先辉, 赵晓东, 侯文龙, 赵卫东. 融合自适应超图的自监督知识感知推荐模型[J]. 计算机科学与探索, 2025, 19(5): 1217-1229.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2406021
| [1] SUN Z, GUO Q, YANG J, et al. Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37: 100879. [2] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. [3] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Pro-ceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 2181-2187. [4] WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5329-5336. [5] JIN J R, QIN J R, FANG Y C, et al. An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 75-84. [6] XIAN Y K, FU Z H, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294. [7] LU L Y, WANG B, ZHANG Z Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]//Procee-dings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 526-534. [8] WANG H, XU Y, YANG C, et al. Knowledge-adaptive contras-tive learning for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 535-543. [9] FERRARA A, ANELLI V W, MANCINO A C M, et al. KGFlex: efficient recommendation with sparse feature factorization and knowledge graphs[J]. ACM Transactions on Recommender Systems, 2023, 1(4): 1-30. [10] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, 2013: 2787-2795. [11] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696. [12] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1205.2618. [13] WANG H W, ZHANG F Z, XIE X, et al. DKN[C]//Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 1835-1844. [14] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous know-ledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137. [15] YU X, REN X, GU Q Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//Proceedings of the IJCAI-13 HINA Workshop, 2013. [16] LUO C, PANG W, WANG Z, et al. Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 917-922. [17] LI D Z, QU H B, WANG J Q. A survey on knowledge graph-based recommender systems[C]//Proceedings of the 2023 China Automation Congress. Piscataway: IEEE, 2023: 2925-2930. [18] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. [19] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. [20] WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887. [21] 李鹏飞, 贺洋, 毋建宏. 融合全局特征的时空网络兴趣点推荐算法[J]. 计算机工程与应用, 2024, 60(11): 75-83. LI P F, HE Y, WU J H. Spatio-temporal network interest point recommendation algorithm fusing global features[J]. Computer Engineering and Applications, 2024, 60(11): 75-83. [22] 张俊三, 肖森, 高慧, 等. 基于邻域采样的多任务图推荐算法[J]. 计算机工程与应用, 2024, 60(9): 172-180. ZHANG J S, XIAO S, GAO H, et al. Multi-task graph recom-mendation algorithm based on neighborhood sampling[J]. Computer Engineering and Applications, 2024, 60(9): 172-180. [23] WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1101-1110. [24] JI S Y, FENG Y F, JI R R, et al. Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2020-2029. [25] YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 413-424. [26] LI Y F, GAO C, LUO H L, et al. Enhancing hypergraph neural networks with intent disentanglement for session-based recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1997-2002. [27] LAI Y T, SU Y J, WEI L W, et al. Multi-view spatial-temporal enhanced hypergraph network for next POI recommendation[C]//Proceedings of the 2023 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 237-252. [28] XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79. [29] SHAO Z F, WANG S J, LU W P, et al. Filter-enhanced hyper-graph transformer for multi-behavior sequential recommendation[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 6575-6579. [30] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. [31] ZOU D, WEI W, WANG Z Y, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2817-2826. [32] YU J L, XIA X, CHEN T, et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 913-926. [33] HE X N, DENG K, WANG X, et al. LightGCN[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. [34] CHEN X, XIONG K, ZHANG Y F, et al. Neural feature-aware recommendation with signed hypergraph convolutional network[J]. ACM Transactions on Information Systems, 2020, 39(1): 1-22. [35] ZHU Y Q, XU Y C, YU F, et al. Deep graph contrastive representation learning[EB/OL]. [2024-03-16]. https://arxiv.org/ abs/2006.04131. [36] RENDLE S, KRICHENE W, ZHANG L, et al. Neural collaborative filtering vs. matrix factorization revisited[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 240-248. [37] CHEN W, HUANG P P, XU J M, et al. POG: personalized outfit generation for fashion recommendation at Alibaba iFashion[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2662-2670. [38] KRICHENE W, RENDLE S, KRICHENE W, et al. On sampled metrics for item recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1748-1757. [39] WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977. [40] WANG Z, LIN G Y, TAN H B, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. [41] DU Y T, ZHU X J, CHEN L, et al. HAKG[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1390-1400. [42] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249-256. [43] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2024-03-16]. https://arxiv.org/abs/1412.6980. |
| [1] | SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521. |
| [2] | JIN Haibo, FENG Yujing. Social Knowledge-Aware Network Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1105-1114. |
| [3] | YE Zhihong, WU Yunbing, DAI Sichong, ZENG Zhihong. Multi-level Fusion Knowledge Graph Completion Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 724-737. |
| [4] | JING Boxiang, WANG Hairong, WANG Tong, YANG Zhenye. Dual-Layer Fusion Knowledge Reasoning with Enhanced Multi-modal Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 406-416. |
| [5] | XU Fengru, LI Bohan, XU Shuai. Research Progress on Sequence Recommendation Based on Deep Learning and Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 344-366. |
| [6] | CHANG Baofa, CHE Chao, LIANG Yan. Research on Recommendation Model Based on Multi-round Dialogue of Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 385-395. |
| [7] | LU Jiamin, ZHANG Jing, FENG Jun, AN Qi. Survey on Construction Method of Temporal Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 295-315. |
| [8] | WANG Yong, QIN Jiajun, HUANG Yourui, DENG Jiangzhou. Design of University Research Management Question Answering System Integrating Knowledge Graph and Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 107-117. |
| [9] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
| [10] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
| [11] | WANG Yonggui, LIU Danni. Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. |
| [12] | LI Xiangxia, CHEN Kairui, LI Bin. Generative Adversarial Network Recommendation System with Multi-dimensional Gradient Feedback Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1579-1589. |
| [13] | FENG Jun, CHANG Yanghong, LU Jiamin, TANG Hailin, LYU Zhipeng, QIU Yuchun. Construction and Application of Knowledge Graph for Water Engineering Scheduling Based on Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647. |
| [14] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
| [15] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/