
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (5): 1198-1216.DOI: 10.3778/j.issn.1673-9418.2408012
• Frontiers·Surveys • Previous Articles Next Articles
LI Guowei, LIU Jing, CAO Hui, JIANG Liang
Online:2025-05-01
Published:2025-04-28
李国威,刘静,曹慧,姜良
LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216.
李国威, 刘静, 曹慧, 姜良. 深度学习在结肠息肉图像分割中的研究综述[J]. 计算机科学与探索, 2025, 19(5): 1198-1216.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2408012
| [1] SPAANDER M C W, ZAUBER A G, SYNGAL S, et al. Young-onset colorectal cancer[J]. Nature Reviews Disease Primers, 2023, 9: 21. [2] MORGAN E, ARNOLD M, GINI A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN[J]. Gut, 2023, 72(2): 338-344. [3] HSU C M, HSU C C, HSU Z M, et al. Intraprocedure artificial intelligence alert system for colonoscopy examination[J]. Sensors, 2023, 23(3): 1211. [4] ANTONELLI G, VOIOSU A M, PAWLAK K M, et al. Training in basic gastrointestinal endoscopic procedures: a European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) position statement[J]. Endoscopy, 2024, 56(2): 131-150. [5] 方超伟, 李雪, 李钟毓, 等. 基于双模型交互学习的半监督医学图像分割[J]. 自动化学报, 2023, 49(4): 805-819. FANG C W, LI X, LI Z Y, et al. Interactive dual-model learning for semi-supervised medical image segmentation[J]. Acta Automatica Sinica, 2023, 49(4): 805-819. [6] LALINIA M, SAHAFI A. Colorectal polyp detection in colonoscopy images using YOLO-V8 network[J]. Signal, Image and Video Processing, 2024, 18(3): 2047-2058. [7] XIA S R, KRISHNAN S, TJOA M P, et al. A novel methodology for extracting colon?? s lumen from colonoscopic images[J]. Journal of Systemics, Cybernetics and Informatics, 2003, 1(2): 7-12. [8] HWANG S, OH J, TAVANAPONG W, et al. Polyp detection in colonoscopy video using elliptical shape feature[C]//Proceedings of the 2007 IEEE International Conference on Image Processing. Piscataway: IEEE, 2007: 465-468. [9] TAJBAKHSH N, GURUDU S R, LIANG J M. Automatic polyp detection using global geometric constraints and local intensity variation patterns[C]//Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2014: 179-187. [10] MAGHSOUDI O H. Superpixel based segmentation and classification of polyps in wireless capsule endoscopy[C]//Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium. Piscataway: IEEE, 2017: 1-4. [11] 邓希泉, 陈刚. ConvUCaps: 基于卷积胶囊网络的医学图像分割模型[J]. 计算机工程与应用, 2024, 60(8): 258-266. DENG X Q, CHEN G. ConvUCaps: medical image segmentation model based on convolutional capsule network[J]. Computer Engineering and Applications, 2024, 60(8): 258-266. [12] ALI S, GHATWARY N, JHA D, et al. Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge[J]. Scientific Reports, 2024, 14(1): 2032. [13] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49. CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49. [14] MENA-RAMíREZ R, MACARI-JORGE A, JUáREZ-HER-NáNDEZ E, et al. Accuracy of narrow-band imaging international colorectal endoscopic classification for predicting the histology of colon polyps by experienced endoscopists and trainees[J]. The Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology, 2023, 34(8): 866-872. [15] CHANG S, KRZYZANOWSKA H, BOWDEN A K. Label-free optical technologies to enhance noninvasive endoscopic imaging of early-stage cancers[J]. Annual Review of Analytical Chemistry, 2024, 17(1): 289-311. [16] XIA J S, JIANG B, PAN J, et al. Imaging of gastrointestinal endoscopy[M]//Transpathology. Amsterdam: Elsevier, 2024: 171-183. [17] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 283-293. [18] BERNAL J, SáNCHEZ F J, FERNáNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. [19] BERNAL J, SáNCHEZ J, VILARI?O F. Towards automatic polyp detection with a polyp appearance model[J]. Pattern Recognition, 2012, 45(9): 3166-3182. [20] VáZQUEZ D, BERNAL J, SáNCHEZ F J, et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017(1): 4037190. [21] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of the 26th Inter-national Conference on MultiMedia Modeling. Cham: Springer, 2020: 451-462. [22] POGORELOV K, RANDEL K R, GRIWODZ C, et al. KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection[C]//Proceedings of the 8th ACM on Multimedia Systems Conference. New York: ACM, 2017: 164-169. [23] ALI S, JHA D, GHATWARY N, et al. A multi-centre polyp detection and segmentation dataset for generalisability assessment[J]. Scientific Data, 2023, 10(1): 75. [24] TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. [25] MA Y T, CHEN X J, CHENG K, et al. LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2021: 387-396. [26] YAO L Y, HE F, WANG X F, et al. Scheme and dataset for evaluating computer-aided polyp detection system in colonoscopy[C]//Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2022: 1-5. [27] JI G P, XIAO G B, CHOU Y C, et al. Video polyp segmentation: a deep learning perspective[J]. Machine Intelligence Research, 2022, 19(6): 531-549. [28] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. [29] GUPTA M, MISHRA A. A systematic review of deep learning based image segmentation to detect polyp[J]. Artificial Intelligence Review, 2024, 57(1): 7. [30] GUO Y, MATUSZEWSKI B. GIANA polyp segmentation with fully convolutional dilation neural networks[C]//Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2019: 632-641. [31] AKBARI M, MOHREKESH M, NASR-ESFAHANI E, et al. Polyp segmentation in colonoscopy images using fully convolutional network[C]//Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 69-72. [32] JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678. [33] SANDERSON E, MATUSZEWSKI B J. FCN-transformer feature fusion for polyp segmentation[C]//Proceedings of the Annual Conference on Medical Image Understanding and Analysis. Cham: Springer, 2022: 892-907. [34] WEN Y, ZHANG L, MENG X L, et al. Rethinking the transfer learning for FCN based polyp segmentation in colonoscopy[J]. IEEE Access, 2023, 11: 16183-16193. [35] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [36] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [37] MENG J, XUE L Y, CHANG Y, et al. Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN[J]. Open Life Sciences, 2020, 15(1): 588-596. [38] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. [39] YANG K, CHANG S L, TIAN Z X, et al. Automatic polyp detection and segmentation using shuffle efficient channel attention network[J]. Alexandria Engineering Journal, 2022, 61(1): 917-926. [40] JHA S, JAGTAP B, MAZUMDAR S, et al. Computer-aided segmentation of polyps using mask R-CNN and approach to reduce false positives[C]//Intelligent Data Engineering and Analytics: Proceedings of the 9th International Conference on Frontiers in Intelligent Computing: Theory and Applications. Singapore: Springer, 2022: 91-98. [41] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [42] MAZUMDAR H, CHAKRABORTY C, SATHVIK M, et al. Optimizing Pix2Pix GAN with attention mechanisms for AI-driven polyp segmentation in IoMT-enabled smart healthcare[J]. IEEE Journal of Biomedical and Health Informatics, 2023. DOI: 10.1109/JBHI.2023.3328962. [43] SUJATHA R, MAHALAKSHMI K, YOOSUF M S. Colorectal cancer prediction via histopathology segmentation using DC-GAN and VAE-GAN[J]. EAI Endorsed Transactions on Per-vasive Health and Technology, 2024, 10. [44] KORA VENU S, RAVULA S. Evaluation of deep convolutional generative adversarial networks for data augmentation of chest X-ray images[J]. Future Internet, 2021, 13(1): 8. [45] ASPERTI A. About generative aspects of variational auto-encoders[C]//Proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science. Cham: Springer, 2019: 71-82. [46] SONG H, SHIN Y. Semantic polyp generation for improving polyp segmentation performance[J]. Journal of Medical and Biological Engineering, 2024, 44(2): 280-292. [47] FAGERENG J A. Polyps segmentation using synthetic images generated by GAN[D]. Oslo: OsloMet-storbyuniversitetet, 2022. [48] MOREU E, ARAZO E, MCGUINNESS K, et al. Joint one-sided synthetic unpaired image translation and segmentation for colorectal cancer prevention[J]. Expert Systems, 2023, 40(6): e13137. [49] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [50] HOLSCHNEIDER M, KRONLAND-MARTINET R, MORLET J, et al. A real-time algorithm for signal analysis with the help of the wavelet transform[C]//Proceedings of the 1989 International Conference on Wavelets: Time-Frequency Methods and Phase Space. Berlin, Heidelberg: Springer, 1989: 286-297. [51] MAHMUD T, PAUL B, FATTAH S A. PolypSegNet: a modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images[J]. Computers in Biology and Medicine, 2021, 128: 104119. [52] JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++: an advanced architecture for medical image segmentation[C]//Proceedings of the 2019 IEEE International Symposium on Multimedia. Piscataway: IEEE, 2019: 225-230. [53] ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. [54] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [55] SAFAROV S, WHANGBO T K. A-DenseUNet: adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution[J]. Sensors, 2021, 21(4): 1441. [56] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [57] SUN X Z, ZHANG P F, WANG D C, et al. Colorectal polyp segmentation by U-Net with dilation convolution[C]//Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2019: 851-858. [58] MOHAPATRA S, PATI G K, MISHRA M, et al. UPolySeg: a U-net-based polyp segmentation network using colonoscopy images[J]. Gastroenterology Insights, 2022, 13(3): 264-274. [59] JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2020: 558-564. [60] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].[2024-06-15]. https://arxiv.org/abs/1804.03999. [61] YEUNG M, SALA E, SCH?NLIEB C B, et al. Focus U-Net: a novel dual attention-gated CNN for polyp segmentation during colonoscopy[J]. Computers in Biology and Medicine, 2021, 137: 104815. [62] LV Y K, LU G H, LI Y. PASK-Net: a hybrid network for polyps image segmentation[EB/OL]. [2024-08-15]. https://doi.org/10.21203/rs.3.rs-4211010/v1. [63] 徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法[J]. 光学精密工程, 2022, 30(8): 970-983. XU C J, YI J B, CAO F, et al. Colorectal polyp segmentation algorithm using DoubleUNet network[J]. Optics and Precision Engineering, 2022, 30(8): 970-983. [64] YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3684-3692. [65] 贾立新, 胡奕标, 金燕, 等. 融合多种注意力机制的结直肠息肉分割神经网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 463-473. JIA L X, HU Y B, JIN Y, et al. Polyp segmentation network combined with multi-attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 463-473. [66] WEI J, HU Y W, ZHANG R M, et al. Shallow attention network for polyp segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2021: 699-708. [67] TOMAR N K, JHA D, BAGCI U, et al. TGANet: text-guided attention for improved polyp segmentation[C]//Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2022: 151-160. [68] YANG L, ZHAI C X, LIU Y H, et al. CFHA-Net: a polyp segmentation method with cross-scale fusion strategy and hybrid attention[J]. Computers in Biology and Medicine, 2023, 164: 107301. [69] LIU J Z, CHEN Q S, ZHANG Y, et al. Multi-level feature fusion network combining attention mechanisms for polyp segmentation[J]. Information Fusion, 2024, 104: 102195. [70] WANG Z N, LIU Z, YU J F, et al. Multi-scale nested UNet with transformer for colorectal polyp segmentation[J]. Journal of Applied Clinical Medical Physics, 2024, 25(6): e14351. [71] LI Z H, ZHANG L, YIN S L, et al. MSCFF-Net: multi-scale context feature fusion network for polyp segmentation[EB/OL]. [2024-08-15]. https://doi.org/10.21203/rs.3.rs-4147185/v1. [72] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [73] GOCERI E. Polyp segmentation using a hybrid vision transformer and a hybrid loss function[J]. Journal of Imaging Informatics in Medicine, 2024, 37(2): 851-863. [74] XIAO B, HU J W, LI W S, et al. CTNet: contrastive transformer network for polyp segmentation[J]. IEEE Transactions on Cybernetics, 2024, 54(9): 5040-5053. [75] OVI T B, BASHREE N, NYEEM H, et al. A transformer-based text-guided approach for improved colonoscopic polyp segmentation[C]//Proceedings of the 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering. Piscataway: IEEE, 2024: 1-6. [76] OUKDACH Y, GARBAZ A, KERKAOU Z, et al. UViT-seg: an efficient ViT and U-net-based framework for accurate colorectal polyp segmentation in colonoscopy and WCE images[J]. Journal of Imaging Informatics in Medicine, 2024, 37(5): 2354-2374. [77] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-06-15]. https://arxiv.org/abs/2010.11929. [78] TOMAR N K, SHERGILL A, RIEDERS B, et al. TransResU-Net: transformer based ResU-Net for real-time colonoscopy polyp segmentation[EB/OL]. [2024-06-15]. https://arxiv.org/abs/2206.08985. [79] PAN S M, LIU X, XIE N D, et al. EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation[J]. BMC Bioinformatics, 2023, 24(1): 85. [80] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [81] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 205-218. [82] AYANA G, BARKI H, CHOE S W. Pathological insights: enhanced vision transformers for the early detection of colorectal cancer[J]. Cancers, 2024, 16(7): 1441. [83] LIN Y J, HAN X X, CHEN K Y, et al. CSwinDoubleU-Net: a double U-shaped network combined with convolution and Swin Transformer for colorectal polyp segmentation[J]. Biomedical Signal Processing and Control, 2024, 89: 105749. [84] LI J P, ULLAH M, VATS A, et al. PolySegNet: improving polyp segmentation through swin transformer and vision transformer fusion[J]. Biomedical Engineering Letters, 2024, 14(6): 1421-1431. [85] 梁礼明, 何安军, 阳渊, 等. 基于Swin Transformer和图形推理的结直肠息肉分割方法[J]. 工程科学学报, 2024, 46(5): 897-907. LIANG L M, HE A J, YANG Y, et al. Colorectal polyp segmentation method based on the Swin Transformer and graph reasoning[J]. Chinese Journal of Engineering, 2024, 46(5): 897-907. [86] YAN R, ZHANG F, RAO X S, et al. Richer fusion network for breast cancer classification based on multimodal data[J]. BMC Medical Informatics and Decision Making, 2021, 21(S1): 134. [87] BANIK D, ROY K, BHATTACHARJEE D, et al. Polyp-net: a multimodel fusion network for polyp segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4000512. [88] HUANG Y L, TAN D H, ZHANG Y, et al. TransMixer: a hybrid transformer and CNN architecture for polyp segmentation[C]//Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2022: 1558-1561. [89] PENG C, QIAN Z Q, WANG K Y, et al. MugenNet: a novel combined convolution neural network and transformer network with its application for colonic polyp image segmentation[EB/OL]. [2024-06-26]. https://arxiv.org/abs/2404.00726. [90] YUAN J, LIU G Q, NAM H. Polyp segmentation based on multilevel information correction transformer[J]. IEEE Access, 2024, 12: 91619-91633. [91] PARK K B, LEE J Y. SwinE-Net: hybrid deep learning approach to novel polyp segmentation using convolutional neural network and Swin Transformer[J]. Journal of Computational Design and Engineering, 2022, 9(2): 616-632. [92] JHA D, TOMAR N K, SHARMA V, et al. TransNetR: transformer-based residual network for polyp segmentation with multi-center out-of-distribution testing[C]//Proceedings of the 2023 International Conference on Medical Imaging with Deep Learning, 2023: 1372-1384. |
| [1] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [2] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [3] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| [4] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [5] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [6] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [7] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [8] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
| [9] | LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176. |
| [10] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
| [11] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [12] | LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622. |
| [13] | MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581. |
| [14] | MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Deep Learning Based Trajectory Similarity Measurement Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 623-644. |
| [15] | CHEN Chong, ZHU Xiaoyu, WANG Fang, XU Yaqian, ZHANG Wei. Comprehensive Review of Physics-Guided Deep Learning: Advancements, Challenges, and Perspectives [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 277-294. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/