[1] MADHUKAR A, WILLIAMSON C. A longitudinal study of P2P traffic classification[C]//Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation. Piscataway: IEEE, 2006: 179-188.
[2] LIN P C, LIN Y D, LAI Y C, et al. Using string matching for deep packet inspection[J]. Computer, 2008, 41(4): 23-28.
[3] Internet control message protocol: RFC792[S]. 1981.
[4] Transmission control protocol: RFC793[S]. 1981.
[5] User datagram protocol: RFC768[S]. 1980.
[6] NIELSEN H, FIELDING R T, BERNERS-LEE T. Hypertext transfer protocol-HTTP/1.0: RFC1945[S]. 1996.
[7] BARNES R, THOMSON M, PIRONTI A, et al. Deprecating secure sockets layer version 3.0: RFC7568[S]. 2015.
[8] ALLEN C, DIERKS T. The TLS protocol version 1.0: RFC2246[S]. 1999.
[9] SHAFIQ M, YU X Z, ALI LAGHARI A, et al. Network traffic classification techniques and comparative analysis using machine learning algorithms[C]//Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications. Piscataway: IEEE, 2016: 2451-2455.
[10] DHOTE Y, AGRAWAL S, DEEN A J. A survey on feature selection techniques for Internet traffic classification[C]//Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks. Piscataway: IEEE, 2015: 1375-1380.
[11] PACHECO F, EXPOSITO E, GINESTE M, et al. Towards the deployment of machine learning solutions in network traffic classification: a systematic survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1988-2014.
[12] LI R, XIAO X, NI S G, et al. Byte segment neural network for network traffic classification[C]//Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service. Piscataway: IEEE, 2018: 1-10.
[13] WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717.
[14] WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017: 43-48.
[15] PANG B, FU Y, REN S, et al. CGNN: traffic classification with graph neural network[EB/OL]. [2024-05-14]. https://arxiv. org/abs/2110.09726.
[16] ZHENG J, ZENG Z Y, FENG T. GCN-ETA: high-efficiency encrypted malicious traffic detection[J]. Security and Communication Networks, 2022(1): 4274139.
[17] DIAO Z L, XIE G G, WANG X, et al. EC-GCN: a encrypted traffic classification framework based on multi-scale graph convolution networks[J]. Computer Networks, 2023, 224: 109614.
[18] HU G W, XIAO X, SHEN M, et al. TCGNN: packet-grained network traffic classification via graph neural networks[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106531.
[19] NIELSEN H, MOGUL J, MASINTER L M, et al. Hypertext transfer protocol-HTTP/1.1: RFC2616[S]. 1999.
[20] RESCORLA E, DIERKS T. The transport layer security (TLS) protocol version 1.2: RFC5246[S]. 2008.
[21] LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
[22] MAO K L, XIAO X, HU G W, et al. Byte-label joint attention learning for packet-grained network traffic classification[C]//Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service. Piscataway: IEEE, 2021: 1-10.
[23] DIAO Y X, SUN Z B, ZHOU Y. A multi-label imbalanced data classification method based on label partition integration[C]//Proceedings of the 20th International Conference on Web Information Systems and Applications. Singapore: Springer, 2023: 14-25. |