[1] 贝毅君, 周勇, 高克威. 面向数控机床设备维护的知识问答技术[J]. 计算机集成制造系统, 2022, 28(9): 2881-2893.
BEI Y J, ZHOU Y, GAO K W. Question answers technology towards maintenance of CNC machine tools[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2881-2893.
[2] 赵月, 何锦雯, 朱申辰, 等. 大语言模型安全现状与挑战[J]. 计算机科学, 2024, 51(1): 68-71.
ZHAO Y, HE J W, ZHU S C, et al. Security of large language models: current status and challenges[J]. Computer Science, 2024, 51(1): 68-71.
[3] 冯拓宇, 李伟平, 郭庆浪, 等. 大语言模型增强的知识图谱问答研究进展综述[J]. 计算机科学与探索, 2024, 18(11): 2887-2900.
FENG T Y, LI W P, GUO Q L, et al. Overview of knowledge graph question answering enhanced by large language models[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2887-2900.
[4] 武杰, 张安思, 吴茂东, 等. 知识图谱在装备故障诊断领域的研究与应用综述[J]. 计算机应用, 2024, 44(9): 2651-2659.
WU J, ZHANG A S, WU M D, et al. Overview of research and application of knowledge graph in equipment fault diag-nosis[J]. Journal of Computer Applications, 2024, 44(9): 2651-2659.
[5] 冯兴杰, 彭洲, 张成豪, 等. 民航领域突发事件的实体链接方法[J]. 计算机应用研究, 2023, 40(4): 1052-1058.
FENG X J, PENG Z, ZHANG C H, et al. Entity linking method for civil aviation emergencies[J]. Application Research of Computers, 2023, 40(4): 1052-1058.
[6] HASHEMI H B, ASIAEE A, KRAFT R. Query intent detection using convolutional neural networks[C]//Proceedings of the 2016 International Conference on Web Search and Data Mining, Workshop on Query Understanding. New York: ACM, 2016.
[7] RAVURI S, STOLCKE A. Recurrent neural network and LSTM models for lexical utterance classification[C]//Proceedings of the Interspeech 2015, 2015: 135-139.
[8] XIA C Y, ZHANG C W, YAN X H, et al. Zero-shot user intent detection via capsule neural networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3090-3099.
[9] KIM B, RYU S, LEE G G. Two-stage multi-intent detection for spoken language understanding[J]. Multimedia Tools and Applications, 2017, 76(9): 11377-11390.
[10] GANGADHARAIAH R, NARAYANASWAMY B. Joint multiple intent detection and slot labeling for goal-oriented dialog[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 564-569.
[11] SONG J B, CHANG C, SUN F, et al. Graph attention collaborative similarity embedding for recommender system[C]//Proceedings of the 26th International Conference on Database Systems for Advanced Applications. Cham: Springer, 2021: 165-178.
[12] KOLITSAS N, GANEA O E, HOFMANN T. End-to-end neural entity linking[C]//Proceedings of the 22nd Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2018: 519-529.
[13] GUO S, CHANG M W, KICIMAN E. To link or not to link? A study on end-to-end Tweet entity linking[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2013: 1020-1030.
[14] LE P, TITOV I. Distant learning for entity linking with automatic noise detection[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4081-4090.
[15] BUNESCU R, PAS?A M. Using encyclopedic knowledge for named entity disambiguation[C]//Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2006: 9-16.
[16] ZHENG Z, LI F, HUANG M, et al. Learning to link entities with knowledge base[C]//Proceedings of the 2010 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2010: 483-491.
[17] SUN Y, LIN L, TANG D, et al. Modeling mention, context and entity with neural networks for entity disambiguation[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 1333-1339.
[18] FRANCIS-LANDAU M, DURRETT G, KLEIN D. Capturing semantic similarity for entity linking with convolutional neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1256-1261.
[19] NIE F, CAO Y B, WANG J P, et al. Mention and entity description co-attention for entity disambiguation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5908-5915.
[20] ZHANG S H, LOU J, ZHOU X J, et al. Entity linking facing incomplete knowledge base[C]//Proceedings of the 19th International Conference on Web Information Systems Engineering. Cham: Springer, 2018: 325-334.
[21] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[22] 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741.
SA R N, LI Y L, LIN M. Survey of question answering based on knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1727-1741.
[23] 姜华, 韩安琪, 王美佳, 等. 基于改进编辑距离的字符串相似度求解算法[J]. 计算机工程, 2014, 40(1): 222-227.
JIANG H, HAN A Q, WANG M J, et al. Solution algorithm of string similarity based on improved levenshtein distance[J]. Computer Engineering, 2014, 40(1): 222-227.
[24] LI B Z, MIN S, IYER S, et al. Efficient one-pass end-to-end entity linking for questions[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6433-6441.
[25] WANG M L, LI M, SUN K W, et al. Entity difference model-ing based entity linking for question answering over knowledge graphs[C]//Proceedings of the 2022 CCF International Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2022: 221-233.
[26] WANG J X, MOUSAVI A, ATTIA O, et al. Entity disambiguation via fusion entity decoding[C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2024: 6524-6536.
[27] KUBE?A D, STRAKA M. DaMuEL: a large multilingual dataset for entity linking[EB/OL]. [2024-11-19]. https://arxiv. org/abs/2306.09288.
[28] LIU J, YANG Y H, LV S Q, et al. Attention-based BiGRU-CNN for Chinese question classification[J]. Journal of Ambient Intelligence and Humanized Computing, 2019. DOI: 10.1007/s12652-019-01344-9.
[29] DENG J, CHENG L, WANG Z. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification[J]. Computer Speech & Language, 2021, 68: 101182.
[30] SUNEERA C M, PRAKASH J, ALAPARTHI V S. Predicting semantic category of answers for question answering systems using transformers: a transfer learning approach[J]. Multimedia Tools and Applications, 2024, 83(32): 77393-77413.
[31] LARSON S, MAHENDRAN A, PEPER J J, et al. An evaluation dataset for intent classification and out-of-scope prediction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 1311-1316.
[32] DUBEY A, JAUHRI A, PANDEY A, et al. The Llama 3 herd of models[EB/OL]. [2024-11-19]. https://arxiv.org/abs/ 2407.21783.
[33] YANG A, YANG B, ZHANG B, et al. Qwen2.5 technical report[EB/OL]. [2024-12-28]. https://arxiv.org/abs/ 2412.15115.
[34] CAO S, SHI J, PAN L, et al. KQA Pro: a dataset with explicit compositional programs for complex question answering over knowledge base[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 6101-6119. |