
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (9): 2363-2383.DOI: 10.3778/j.issn.1673-9418.2501030
• Frontiers·Surveys • Previous Articles Next Articles
LIU Xiaojia, CHEN Hongyu, YU Dexin, CHEN Yunjie, ZHOU Yuqin
Online:2025-09-01
Published:2025-09-01
刘晓佳,陈泓妤,于德新,陈云结,周宇琴
LIU Xiaojia, CHEN Hongyu, YU Dexin, CHEN Yunjie, ZHOU Yuqin. Review of Trajectory Prediction for Autonomous Vehicles Based on Short-Term and Long-Term Characteristics[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2363-2383.
刘晓佳, 陈泓妤, 于德新, 陈云结, 周宇琴. 面向自动驾驶汽车长短时特性的轨迹预测综述[J]. 计算机科学与探索, 2025, 19(9): 2363-2383.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2501030
| [1] LEFèVRE S, VASQUEZ D, LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014, 1(1): 1. [2] LEON F, GAVRILESCU M. A review of tracking and trajectory prediction methods for autonomous driving[J]. Mathematics, 2021, 9(6): 660. [3] LIU J B, MAO X Y, FANG Y Q, et al. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2021: 978-985. [4] HUANG Y J, DU J T, YANG Z R, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674. [5] KARLE P, GEISSLINGER M, BETZ J, et al. Scenario understanding and motion prediction for autonomous vehicles: review and comparison[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 16962-16982. [6] 杨智勇, 郭洁铷, 郭子杭, 等. 道路行人行为轨迹预测研究综述[J]. 计算机科学与探索, 2025, 19(5): 1177-1197. YANG Z Y, GUO J R, GUO Z H, et al. Review of research on trajectory prediction of road pedestrian behavior[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. [7] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1468-1476. [8] WENG X S, YUAN Y, KITANI K. PTP: parallelized tracking and prediction with graph neural networks and diversity sampling[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4640-4647. [9] LEE N, CHOI W, VERNAZA P, et al. DESIRE: distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2165-2174. [10] ZHANG K P, ZHAO L, DONG C X, et al. AI-TP: attention-based interaction-aware trajectory prediction for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 73-83. [11] LI X, YING X W, CHUAH M C. GRIP: graph-based interaction-aware trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3960-3966. [12] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Non-local social pooling for vehicle trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 975-980. [13] PARK D, JEONG J, YOON S H, et al. T4P: test-time training of trajectory prediction via masked autoencoder and actor-specific token memory[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15065-15076. [14] LU J W, CUI C, MA Y S, et al. Quantifying uncertainty in motion prediction with variational Bayesian mixture[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15428-15437. [15] JIA X S, WU P H, CHEN L, et al. HDGT: heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13860-13875. [16] GAO J Y, SUN C, ZHAO H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11522-11530. [17] ZENG W Y, LIANG M, LIAO R J, et al. LaneRCNN: distributed representations for graph-centric motion forecasting[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 532-539. [18] LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 541-556. [19] GU J R, SUN C, ZHAO H. DenseTNT: end-to-end trajectory prediction from dense goal sets[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15283-15292. [20] ZHANG K P, LI L. Explainable multimodal trajectory prediction using attention models[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103829. [21] SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 683-700. [22] YUAN Y, WENG X S, OU Y L, et al. AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9793-9803. [23] NGIAM J, CAINE B, VASUDEVAN V, et al. Scene transformer: a unified architecture for predicting multiple agent trajectories[EB/OL]. [2024-12-10]. https://arxiv.org/abs/2106.08417. [24] ZHOU Z K, WANG J P, LI Y, et al. Query-centric trajectory prediction[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 17863-17873. [25] SHI S S, JIANG L, DAI D X, et al. MTR: multi-agent motion prediction with symmetric scene modeling and guided intention querying[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3955-3971. [26] DJURIC N, RADOSAVLJEVIC V, CUI H G, et al. Uncertainty-aware short-term motion prediction of traffic actors for autonomous driving[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2084-2093. [27] BREUER A, ELFLEIN S, JOSEPH T, et al. Analysis of the effect of various input representations for LSTM-based trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 2728-2735. [28] SCHLENOFF C, MADHAVAN R, KOOTBALLY Z. PRIDE: a hierarchical, integrated prediction framework for autonomous on-road driving[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2006: 2348-2353. [29] BARTH A, FRANKE U. Where will the oncoming vehicle be the next second? [C]//Proceedings of the 2008 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2008: 1068-1073. [30] AMMOUN S, NASHASHIBI F. Real time trajectory prediction for collision risk estimation between vehicles[C]//Proceedings of the 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing. Piscataway: IEEE, 2009: 417-422. [31] HERMES C, WOHLER C, SCHENK K, et al. Long-term vehicle motion prediction[C]//Proceedings of the 2009 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2009: 652-657. [32] HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]//Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2013: 4363-4369. [33] TRAN Q, FIRL J. Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression[C]//Proceedings of the 2014 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2014: 918-923. [34] OKAMOTO K, BERNTORP K, DI CAIRANO S. Driver intention-based vehicle threat assessment using random forests and particle filtering[J]. IFAC-PapersOnLine, 2017, 50(1): 13860-13865. [35] XIE G T, GAO H B, QIAN L J, et al. Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5999-6008. [36] LEFKOPOULOS V, MENNER M, DOMAHIDI A, et al. Interaction-aware motion prediction for autonomous driving: a multiple model Kalman filtering scheme[J]. IEEE Robotics and Automation Letters, 2021, 6(1): 80-87. [37] BROUWER N, KLOEDEN H, STILLER C. Comparison and evaluation of pedestrian motion models for vehicle safety systems[C]//Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2016: 2207-2212. [38] ZYNER A, WORRALL S, NEBOT E. Naturalistic driver intention and path prediction using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1584-1594. [39] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42. [40] LIU J X, LUO Y G, XIONG H, et al. An integrated approach to probabilistic vehicle trajectory prediction via driver characteristic and intention estimation[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3526-3532. [41] KAMANN A, BIELMEIER J B, HASIRLIOGLU S, et al. Object tracking based on an extended Kalman filter in high dynamic driving situations[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2017: 1-6. [42] SCHREIER M, WILLERT V, ADAMY J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2751-2766. [43] BERNTORP K, HOANG T, DI CAIRANO S. Motion planning of autonomous road vehicles by particle filtering[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 197-210. [44] ZHANG Z Y, WANG C Y, ZHAO W Z, et al. Ego vehicle trajectory prediction based on time-feature encoding and physics-intention decoding[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 6527-6542. [45] LAUGIER C, PAROMTCHIK I E, PERROLLAZ M, et al. Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(4): 4-19. [46] WIEST J, H?FFKEN M, KRE?EL U, et al. Probabilistic trajectory prediction with Gaussian mixture models[C]//Proceedings of the 2012 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2012: 141-146. [47] SCHLECHTRIEMEN J, WIRTHMUELLER F, WEDEL A, et al. When will it change the lane? A probabilistic regression approach for rarely occurring events[C]//Proceedings of the 2015 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2015: 1373-1379. [48] DEO N, RANGESH A, TRIVEDI M M. How would surround vehicles move? A unified framework for maneuver classification and motion prediction[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(2): 129-140. [49] LIU J X, LUO Y G, ZHONG Z H, et al. A probabilistic architecture of long-term vehicle trajectory prediction for autonomous driving[J]. Engineering, 2022, 19: 228-239. [50] LIU P, KURT A, ?ZGüNER ü. Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2014: 942-947. [51] WANG Y S, WANG C Y, ZHAO W Z, et al. Decision-making and planning method for autonomous vehicles based on motivation and risk assessment[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 107-120. [52] SCHREIER M, WILLERT V, ADAMY J. Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2014: 334-341. [53] LI J X, DAI B, LI X H, et al. A dynamic Bayesian network for vehicle maneuver prediction in highway driving scenarios: framework and verification[J]. Electronics, 2019, 8(1): 40. [54] GAO H B, ZHU J P, ZHANG T, et al. Situational assessment for intelligent vehicles based on stochastic model and Gaussian distributions in typical traffic scenarios[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(3): 1426-1436. [55] YANG X, CHEN L, Cao D. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 69(2): 1341-1352. [56] ALTCHé F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2017: 353-359. [57] PARK S H, KIM B, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 1672-1678. [58] DAI S Z, LI L, LI Z H. Modeling vehicle interactions via modified LSTM models for trajectory prediction[J]. IEEE Access, 2019, 7: 38287-38296. [59] HOU L, XIN L, LI S E, et al. Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4615-4625. [60] CUI H G, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 2090-2096. [61] XIE G, SHANGGUAN A Q, FEI R, et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China Information Sciences, 2020, 63(11): 212207. [62] MESSAOUD K, DEO N, TRIVEDI M M, et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation[C]//Proceedings of the 2021 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2021: 165-170. [63] SHENG Z H, XU Y W, XUE S B, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17654-17665. [64] KATARIYA V, BAHARANI M, MORRIS N, et al. DeepTrack: lightweight deep learning for vehicle trajectory prediction in highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18927-18936. [65] MERCAT J, GILLES T, EL ZOGHBY N, et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 9638-9644. [66] HAO Z X, HUANG X, WANG K G, et al. Attention-based GRU for driver intention recognition and vehicle trajectory prediction[C]//Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence. Piscataway: IEEE, 2020: 86-91. [67] YAN J, PENG Z F, YIN H L, et al. Trajectory prediction for intelligent vehicles using spatial-attention mechanism[J]. IET Intelligent Transport Systems, 2020, 14(13): 1855-1863. [68] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(1): 175-185. [69] DIEHL F, BRUNNER T, LE M T, et al. Graph neural networks for modelling traffic participant interaction[C]//Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 695-701. [70] MO X Y, XING Y, LV C. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[C]//Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE, 2021: 1934-1939. [71] SCHMIDT J, JORDAN J, GRITSCHNEDER F, et al. CRAT-pred: vehicle trajectory prediction with crystal graph convolutional neural networks and multi-head self-attention[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 7799-7805. [72] NAYAKANTI N, AL-RFOU R, ZHOU A, et al. Wayformer: motion forecasting via simple & efficient attention networks[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 2980-2987. [73] 刘桂红, 周宗润, 孟祥福. 基于Transformer和多关系图卷积网络的行人轨迹预测[J]. 计算机科学与探索, 2025, 19(5): 1353-1364. LIU G H, ZHOU Z R, MENG X F, et al. Pedestrian trajectory prediction based on transformer and multi-relation graph convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. [74] LIU J X, LUO Y G, ZHONG Z H, et al. A probabilistic architecture of long-term vehicle trajectory prediction for autonomous driving[J]. Engineering, 2022, 19: 228-239. [75] HOU L, XIN L, Li S E, et al. Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4615-4625. [76] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 961-971. [77] MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Relational recurrent neural networks for vehicle trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 1813-1818. [78] CHANDRA R, BHATTACHARYA U, BERA A, et al. TraPHic: trajectory prediction in dense and heterogeneous traffic using weighted interactions[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8475-8484. [79] NIKHIL N, MORRIS B T. Convolutional neural network for trajectory prediction[C]//Proceedings of the 15th European Conference on Computer Vision Workshops. Cham: Springer, 2018: 186-196. [80] SHEN G J, LI P F, CHEN Z Y, et al. Spatio-temporal interactive graph convolution network for vehicle trajectory prediction[J]. Internet of Things, 2023, 24: 100935. [81] MO X Y, XING Y, LV C. Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 191: 103748. [82] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2025-04-09]. https://arxiv.org/abs/1803.01271. [83] ZHAO H, GAO J Y, LAN T, et al. TNT: target-driven trajectory prediction[C]//Proceedings of the 4th Conference on Robot Learning, 2020: 895-904. [84] ZHOU Z K, YE L Y, WANG J P, et al. HiVT: hierarchical vector transformer for multi-agent motion prediction[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8813-8823. [85] ZHOU Z, ZHOU H, HU H, et al. ModeSeq: taming sparse multimodal motion prediction with sequential mode modeling[EB/OL]. [2025-04-09]. https://arxiv.org/abs/2411. 11911. [86] AZADANI M N, BOUKERCHE A. STAG: a novel interaction-aware path prediction method based on spatio-temporal attention graphs for connected automated vehicles[J]. Ad Hoc Networks, 2023, 138: 103021. [87] 高镇海, 鲍明喜, 赵睿, 等. 基于目标锚点驱动的多模态轨迹预测方法[J/OL]. 吉林大学学报(工学版) [2024-12-15]. https://link.cnki.net/doi/10.13229/j.cnki.jdxbgxb.20240682. GAO Z H, BAO M X, ZHAO R, et al. Multimodal trajectory prediction based on target anchor-driven[J/OL]. Journal of Jilin University (Engineering and Technology Edition) [2024-12-15]. https://link.cnki.net/doi/10.13229/j.cnki. jdxbgxb.20240682. [88] WU K S, ZHOU Y, SHI H T, et al. Graph-based interaction-aware multimodal 2D vehicle trajectory prediction using diffusion graph convolutional networks[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 3630-3643. [89] LI F J, ZHANG C Y, CHEN C L P. STS-DGNN: vehicle trajectory prediction via dynamic graph neural network with spatial-temporal synchronization[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2525413. [90] CAI J J, ZHU H, FENG H L, et al. Vehicle trajectory prediction based on dynamic graph neural network[C]//Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2024: 67-72. [91] WANG Z N, ZHANG J W, CHEN J C, et al. Spatio-temporal context graph transformer design for map-free multi-agent trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1369-1381. [92] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10335-10342. [93] YU C J, MA X, REN J W, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction [C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 507-523. [94] AMIRLOO E, RASOULI A, LAKNER P, et al. LatentFormer: multi-agent transformer-based interaction modeling and trajectory prediction[EB/OL]. [2024-12-15]. https://arxiv.org/abs/2203.01880. [95] LIU Y C, ZHANG J H, FANG L J, et al. Multimodal motion prediction with stacked transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7573-7582. [96] 杨达, 刘家威, 郑斌, 等. 基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J]. 交通运输系统工程与信息, 2024, 24(2): 114-126. YANG D, LIU J W, ZHENG B, et al. A vehicle lane-changing trajectory prediction model based on temporal convolutional networks and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(2): 114-126. [97] LV Z Z, HUANG X C, CAO W G. An improved GAN with transformers for pedestrian trajectory prediction models[J]. International Journal of Intelligent Systems, 2022, 37(8): 4417-4436. [98] CHEN X B, ZHANG H J, DENG F W, et al. Stochastic non-autoregressive transformer-based multi-modal pedestrian trajectory prediction for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3561-3574. [99] HOU L, LI S E, YANG B, et al. Structural transformer improves speed-accuracy trade-off in interactive trajectory prediction of multiple surrounding vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24778-24790. [100] TSAO L W, WANG Y-K, LIN H S, et al. Social-SSL: self-supervised cross-sequence representation learning based on transformers for multi-agent trajectory prediction[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 234-250. [101] ZHANG L, LI P L, CHEN J, et al. Trajectory prediction with graph-based dual-scale context fusion[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 11374-11381. [102] LIU Y, LI B H, WANG X Z, et al. Attention-aware social graph transformer networks for stochastic trajectory prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 5633-5646. [103] PITOMBEIRA-NETO A R, SANTOS H P, COELHO DA SILVA T L, et al. Trajectory modeling via random utility inverse reinforcement learning[J]. Information Sciences, 2024, 660: 120128. [104] YANG B, LU Y N, WAN R, et al. Meta-IRLSOT++: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks[J]. Expert Systems with Applications, 2024, 240: 122499. [105] WU Z, SUN L T, ZHAN W, et al. Efficient sampling-based maximum entropy inverse reinforcement learning with application to autonomous driving[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5355-5362. [106] GENG M S, CAI Z E, ZHU Y Z, et al. Multimodal vehicular trajectory prediction with inverse reinforcement learning and risk aversion at urban unsignalized intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12227-12240. [107] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[EB/OL]. [2024-12-18]. https://arxiv.org/abs/2001.00735. [108] JIAO Y J, MIAO M Z, YIN Z S, et al. A hierarchical hybrid learning framework for multi-agent trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 10344-10354. [109] KUEFLER A, MORTON J, WHEELER T, et al. Imitating driver behavior with generative adversarial networks[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2017: 204-211. [110] PENG J W, HU M C, CHU W T. An imitation learning framework for generating multi-modal trajectories from unstructured demonstrations[J]. Neurocomputing, 2022, 500: 712-723. [111] 崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习自动驾驶轨迹预测[J]. 郑州大学学报(工学版), 2023, 44(5): 53-61. CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 53-61. [112] XIN L, WANG P, CHAN C Y, et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 1441-1446. [113] GIRASE H, GANG H M, MALLA S, et al. LOKI: long term and key intentions for trajectory prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9783-9792. [114] LUAN Z K, HUANG Y F, ZHAO W Z, et al. A comprehensive lateral motion prediction method of surrounding vehicles integrating driver intention prediction and vehicle behavior recognition[J]. Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering, 2023, 237(1): 61-74. [115] CHEN X B, ZHANG H J, ZHAO F, et al. Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19471-19483. [116] 黄晶, 刘祥臻, 邓潇阳, 等. 基于多模态轨迹预测的智能车轨迹规划研究[J]. 汽车工程, 2024, 46(6): 965-974. HUANG J, LIU X Z, DENG X Y, et al. Research on intelligent vehicle trajectory planning based on multimodal trajectory prediction[J]. Automotive Engineering, 2024, 46(6): 965-974. [117] LIU J X, XIONG H, WANG T H, et al. Probabilistic vehicle trajectory prediction via driver characteristic and intention estimation model under uncertainty[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2021, 48(6): 778-791. [118] FENG X D, CEN Z P, HU J M, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3514-3519. [119] SHI K S, WU Y K, SHI H T, et al. An integrated car-following and lane changing vehicle trajectory prediction algorithm based on a deep neural network[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 599: 127303. |
| [1] | WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362. |
| [2] | HUA Chunjian, YAO Yetao, JIANG Yi, YU Jianfeng, CHEN Ying. RGB-D Saliency Detection with Feature Enhancement and Progressive Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2419-2429. |
| [3] | YANG Bin, MA Tinghuai, HUANG Xuejian, WANG Yubo, WANG Zhaoming, ZHAO Bowen, YU Xin. Time Series Anomaly Detection Based on Spatio-Temporal Feature Fusion and Sequence Reconstruction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2384-2398. |
| [4] | MIN Feng, LIU Yuzhuo, LIU Yuhui, LIU Biao. Multivariate Time Series Prediction Model Based on Mixed Features of Time Domain and Frequency Domain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2099-2109. |
| [5] | HONG Wei, GENG Peilin, WANG Hongyu, ZHANG Xueqin, GU Chunhua. Local Dynamic Clean-Label Backdoor Attack with Image Salience Regions [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2229-2240. |
| [6] | DONG Jiadong, SANG Feihu, GUO Qinghu, CHEN Lin, ZHENG Chunxiang. Review of Lightweight Object Detection Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2057-2084. |
| [7] | ZHANG Yifei, LI Yanling, GE Fengpei. Review of Legal Judgment Prediction Based on Graph Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2024-2042. |
| [8] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [9] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [10] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [11] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [12] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [13] | MENG Xiangfu, SUN Shuonan, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Trajectory Representation Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1437-1454. |
| [14] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [15] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/