
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (9): 2341-2362.DOI: 10.3778/j.issn.1673-9418.2409083
• Frontiers·Surveys • Previous Articles Next Articles
WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua
Online:2025-09-01
Published:2025-09-01
魏宗月,仇大伟,刘静,李振江,常少华
WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362.
魏宗月, 仇大伟, 刘静, 李振江, 常少华. 深度学习在上肢骨折诊断中的研究进展[J]. 计算机科学与探索, 2025, 19(9): 2341-2362.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2409083
| [1] CURNOW H, MILLAR R. Too far to fall: exploring the relationship between playground equipment and paediatric upper limb fractures[J]. Journal of Paediatrics and Child Health, 2021, 57(10): 1651-1657. [2] 高青, 姚婷婷, 李瑛, 等. 骨科快速康复干预对上肢骨折患者的影响[J]. 河北医药, 2024, 46(4): 571-573. GAO Q, YAO T T, LI Y, et al. Analysis and evaluation of the influence of rapid orthopaedic rehabilitation intervention on patients with upper limb fractures[J]. Hebei Medical Journal, 2024, 46(4): 571-573. [3] HALLAS P, ELLINGSEN T. Errors in fracture diagnoses in the emergency department: characteristics of patients and diurnal variation[J]. BMC Emergency Medicine, 2006, 6: 4. [4] FERNHOLM R, H?RENSTAM K P, WACHTLER C, et al. Diagnostic errors reported in primary healthcare and emergency departments: a retrospective and descriptive cohort study of 4830 reported cases of preventable harm in Sweden[J]. European Journal of General Practice, 2019, 25(3): 128-135. [5] 张玲, 李晓天, 邹向前, 等. 微创下内固定术与常规固定方法治疗上肢骨折的临床效果比较[J]. 中国医药指南, 2018, 16(25): 34. ZHANG L, LI X T, ZOU X Q, et al. Clinical comparison of minimally invasive internal fixation and conventional fixation methods for the treatment of upper limb fractures[J]. Guide of China Medicine, 2018, 16(25): 34. [6] MEENA T, ROY S. Bone fracture detection using deep supervised learning from radiological images: a paradigm shift[J]. Diagnostics, 2022, 12(10): 2420. [7] STEFANAC S J, NESBIT S P. Diagnosis and treatment planning in dentistry: diagnosis and treatment planning in dentistry-e-book[M]. Elsevier Health Sciences, 2023. [8] WILLEMINK M J, KOSZEK W A, HARDELL C, et al. Preparing medical imaging data for machine learning[J]. Radiology, 2020, 295(1): 4-15. [9] BAKKOURI I, AFDEL K. Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images[J]. Multimedia Tools and Applications, 2020, 79(29): 20483-20518. [10] 张斌, 成跃, 杜静波, 等. 基于深度学习的计算机辅助诊断系统在诊断肋骨骨折方面的应用价值[J]. 武警医学, 2023, 34(8): 656-659. ZHANG B, CHENG Y, DU J B, et al. Application value of deep learning-based computer-aided diagnosis system in diagnosing rib fractures[J]. Medical Journal of the Chinese People??s Armed Police Force, 2023, 34(8): 656-659. [11] GUO Z C, XIE J P, WAN Y, et al. A review of the current state of the computer-aided diagnosis (CAD) systems for breast cancer diagnosis[J]. Open Life Sciences, 2022, 17(1): 1600-1611. [12] LINDSEY R, DALUISKI A, CHOPRA S, et al. Deep neural network improves fracture detection by clinicians[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(45): 11591-11596. [13] ALLMAN JR F L. Fractures and ligamentous injuries of the clavicle and its articulation[J]. Journal of Bone and Joint Surgery-American Volume, 1967, 49(4): 774-784. [14] KANI K K. Clavicle fractures: review and update for radio-logists[J]. Current Problems in Diagnostic Radiology, 2020, 49(3): 199-204. [15] MEINBERG E G, AGEL J, ROBERTS C S, et al. Fracture and dislocation classification compendium-2018[J]. Journal of Orthopaedic Trauma, 2018, 32(S1). [16] 宋芳芳, 赵高峰. 右美托咪定术前滴鼻对小儿眼科手术后麻醉恢复及躁动和镇静的影响[J]. 感染、炎症、修复, 2022, 23(3): 162-164. SONG F F, ZHAO G F. Effect of preoperative nasal drops of dexmedetomidine on postoperative anesthesia recovery, agitation, and sedation in pediatric ophthalmic surgery[J]. Infection, Inflammation, Repair, 2022, 23(3): 162-164. [17] 李爱霞, 易蓉, 吴新海. 右美托咪定在上肢手术患者术后连续臂丛神经阻滞镇痛中的应用效果[J]. 当代医学, 2021, 27(14): 53-55. LI A X, YI R, WU X H. Effect of dexmedetomidine in continuous brachial plexus block analgesia after upper limb surgery[J]. Contemporary Medicine, 2021, 27(14): 53-55. [18] 曹发奇, 刘梦非, 周武, 等. 2023美国骨科医师学会临床实践指南: 锁骨骨折的治疗概要[J]. 临床外科杂志, 2024, 32(1): 52-54. CAO F Q, LIU M F, ZHOU W, et al. 2023 American Academy of Orthopaedic Surgeons clinical practice guideline summary: the treatment of clavicle fractures[J]. Journal of Clinical Surgery, 2024, 32(1): 52-54. [19] 许国强, 王刚, 王宝军, 等. 填塞钉在锁骨中段骨折手术治疗中的应用研究[J]. 临床和实验医学杂志, 2024, 23(4): 397-400. XU G Q, WANG G, WANG B J, et al. Application of locking screw plugs in surgical treatment of midshaft clavicle fractures[J]. Journal of Clinical and Experimental Medicine, 2024, 23(4): 397-400. [20] 李金兴, 宁文付. 适度预弯锁骨锁定钢板治疗锁骨中段“折枝样” 骨折合并喙突骨折、肩锁韧带损伤[J]. 中国骨与关节损伤杂志, 2024, 39(3): 307-308. LI J X, NING W F. Moderate pre bending clavicle locking plate treatment for “bifurcated” clavicle fracture combined with coracoid process fracture and acromioclavicular ligament injury[J]. Chinese Journal of Bone and Joint Injury, 2024, 39(3): 307-308. [21] 曹清宇. 基于深度学习的锁骨骨折检测的研究与应用[D]. 上海: 东华大学, 2023. CAO Q Y. Research and application of clavicle fracture detection based on deep learning[D]. Shanghai: Donghua University, 2023. [22] BAKER H P, GUTBROD J, STRELZOW J A, et al. Management of proximal humerus fractures in adults-a scoping review[J]. Journal of Clinical Medicine, 2022, 11(20): 6140. [23] 王春亮. 肱骨近端骨折解剖结构、分型及治疗方案研究[J]. 医学理论与实践, 2024, 37(4): 571-573. WANG C L. Research on the anatomical structure, classification, and treatment plan of proximal humeral fractures[J]. The Journal of Medical Theory and Practice, 2024, 37(4): 571-573. [24] 丁建华. 螺旋CT三维重建在肱骨骨折诊断及治疗中的应用[J]. 世界复合医学, 2022, 8(2): 66-68. DING J H. Application of spiral CT 3D reconstruction in diagnosis and treatment of humerus fractures[J]. World Journal of Complex Medicine, 2022, 8(2): 66-68. [25] 于丰玮, 刘永涛, 庞波涛, 等. 腕关节镜辅助下桡骨远端骨折治疗的研究进展[J]. 实用手外科杂志, 2023, 37(3): 425-429. YU F W, LIU Y T, PANG B T, et al. Research progress on the treatment of distal radius fractures with wrist arthroscopy[J]. Journal of Practical Hand Surgery, 2023, 37(3): 425-429. [26] 华臻, 王建伟, 尹恒, 等. 成人桡骨远端骨折非手术治疗后桡骨短缩的相关因素[J]. 中国矫形外科杂志, 2018, 26(16): 1446-1451. HUA Z, WANG J W, YIN H, et al. Relative factors of radial shortening in distal radial fracture after non-surgical therapy in adults[J]. Orthopedic Journal of China, 2018, 26(16): 1446-1451. [27] 崔鑫, 程灏, 李永耀, 等. 急性腕骨骨折的治疗[C]//2019楚天骨科高峰论坛暨第二十六届中国中西医结合骨伤科学术年会论文集, 2019: 40. CUI X, CHENG H, LI Y Y, et al. Treatment of acute wrist fractures[C]//Proceedings of the 2019 Chutian Orthopedics Summit and the 26th China Association of Traditional Chinese and Western Medicine Orthopedics and Traumatology Annual Conference, 2019: 40. [28] 孔志刚, 钱臣, 赵金坤. 腕舟状骨骨折治疗研究进展[J]. 中国骨与关节损伤杂志, 2020, 35(3): 332-334. KONG Z G, QIAN C, ZHAO J K. Research progress in the treatment of wrist scaphoid fractures[J]. Chinese Journal of Bone and Joint Injury, 2020, 35(3): 332-334. [29] 阿卜杜热依木·阿卜杜克热木, 季佳庆, 殷子越, 等. 月骨骨折的治疗进展[J]. 外科研究与新技术(中英文), 2024, 13(1): 67-71. Abudureyimu Abudukeremu, JI J Q, YIN Z Y, et al. Progress in the treatment of lunate fracture[J]. Surgical Research and New Technique, 2024, 13(1): 67-71. [30] 杨景全, 陈星隆, 李志杰, 等. 挤压伤致尺侧腕掌骨骨折脱位的分型及治疗[C]//2014年浙江省骨科学学术年会论文汇编, 2014: 296. YANG J Q, CHEN X L, LI Z J, et al. Classification and treatment of ulnar wrist and metacarpal fractures and dislocations caused by compression injuries[C]//Compilation of Papers from the 2014 Zhejiang Orthopedics Academic Annual Conference, 2014: 296. [31] 苏广兴. 腕骨骨折与脱位治疗效果分析[J]. 心理月刊, 2020, 15(3): 165. SU G X. Analysis of therapeutic effects on wrist fractures and dislocations[J]. Journal of Psychology, 2020, 15(3): 165. [32] MAGNéLI M, LING P, GISLéN J, et al. Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle[J]. PLoS One, 2023, 18(8): e0289808. [33] RAJPURKAR P, IRVIN J, BAGUL A, et al. MURA: large dataset for abnormality detection in musculoskeletal radiographs[EB/OL]. [2024-07-18]. https://arxiv.org/abs/1712.06957. [34] CHADA G. Machine learning models for abnormality detection in musculoskeletal radiographs[J]. Reports, 2019, 2(4): 26. [35] ABEDEEN I, RAHMAN M A, PROTTYASHA F Z, et al. FracAtlas: a dataset for fracture classification, localization and segmentation of musculoskeletal radiographs[J]. Scientific Data, 2023, 10: 521. [36] SAIRAM V A. Bone fracture detection using X-rays[EB/OL]. [2024-07-18]. https://www.kaggle.com/datasets/vuppalaadithyasairam/bone-fracture-detection-using-xrays. [37] ERDA? ? B. Automated fracture detection in the ulna and radius using deep learning on upper extremity radiographs[J]. Joint Diseases and Related Surgery, 2023, 34(3): 598-604. [38] NAGY E, JANISCH M, HR?I? F, et al. A pediatric wrist trauma X-ray dataset (GRAZPEDWRI-DX) for machine learning[J]. Scientific Data, 2022, 9: 222. [39] JOSHI D, SINGH T P, JOSHI A K. Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs[J]. Neural Computing and Applications, 2022, 34(21): 19061-19077. [40] 肖晶晶, 樊博彦, 杨雨婷. 雾环境下的船舶目标检测研究[J]. 重庆理工大学学报(自然科学), 2024, 38(3): 212-219. XIAO J J, FAN B Y, YANG Y T. Research on ship object detection in foggy environments[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(3): 212-219. [41] KARANAM S R, SRINIVAS Y, CHAKRAVARTY S. A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms[J]. Computer Assisted Methods in Engineering and Science, 2023, 30(3): 369-385. [42] KOTHAMALI P R, BANIK S, DANDYALA S S M, et al. Advancing telemedicine and healthcare systems with AI and machine learning[J]. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 2024, 15(1): 177-207. [43] JIN N, ZHAN X. Big data analytics for image processing and computer vision technologies in sports health management[J]. Technology and Health Care, 2024, 32(5): 3167-3187. [44] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [45] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, 2012: 1106-1114. [46] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-07-18]. https://arxiv.org/abs/1409.1556. [47] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. [48] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [49] NAEEM S, NASEER A, UR REHMAN S, et al. Enhancing finger fracture diagnosis: a deep learning approach using ResNet and VGG[EB/OL]. [2024-07-18]. https://www.preprints.org/manuscript/202311.1990/v1. [50] KHAN M I. Bone fracture identification with deep learning model using Resnet50[J]. International Journal of Computing and Digital Systems, 2024, 16(1): 1-14. [51] IANDOLA F, MOSKEWICZ M, KARAYEV S, et al. DenseNet: implementing efficient ConvNet descriptor pyramids[EB/OL]. [2024-07-18]. https://arxiv.org/abs/1404.1869. [52] MADAN S, KESHARWANI S, AKHIL K V S, et al. Abnormality detection in humerus bone radiographs using DenseNet[C]//Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT). Piscataway: IEEE, 2021: 1-5. [53] GAN K F, LIU Y P, ZHANG T, et al. Deep learning model for automatic identification and classification of distal radius fracture[J]. Journal of Imaging Informatics in Medicine, 2024, 37(6): 2874-2882. [54] IANDOLA F, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. [2024-07-19]. https://arxiv.org/abs/1602.07360. [55] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications (2017)[EB/OL]. [2024-07-19]. https://arxiv.org/abs/1704.04861. [56] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. [57] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6105-6114. [58] KHANAPURE A, KASHYAP H, BIDARGADDI A, et al. Bone fracture detection with X-ray images using MobileNet V3 architecture[C]//Proceedings of the 2024 IEEE 9th International Conference for Convergence in Technology. Piscataway: IEEE, 2024: 1-8. [59] BARUA K, MAHMUD T, BARUA A, et al. Explainable AI-based humerus fracture detection and classification from X-ray images[C]//Proceedings of the 2023 26th International Conference on Computer and Information Technology. Piscataway: IEEE, 2023: 1-6. [60] MIN H, RABI Y, WADHAWAN A, et al. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework[J]. Physical and Engineering Sciences in Medicine, 2023, 46(2): 877-886. [61] ANWAR T, ANWAR H. LSNet: a novel CNN architecture to identify wrist fracture from a small X-ray dataset[J]. International Journal of Information Technology, 2023, 15(5): 2469-2477. [62] KAYA O, TA?CI B. A pyramid deep feature extraction model for the automatic classification of upper extremity fractures[J]. Diagnostics, 2023, 13(21): 3317. [63] GUPTA S, SHARMA D. Bone fracture classification using transfer learning[EB/OL]. [2024-07-19]. https://arxiv.org/abs/2406.15958. [64] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [65] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-07-19]. https://arxiv.org/abs/2010.11929. [66] TANZI L, AUDISIO A, CIRRINCIONE G, et al. Vision transformer for femur fracture classification[J]. Injury, 2022, 53(7): 2625-2634. [67] ALAM T, YEH W C, HSU F R, et al. An integrated approach using YOLOv8 and ResNet, SeResNet & vision transformer (ViT) algorithms based on ROI fracture prediction in X-ray images of the elbow[J]. Current Medical Imaging Current Medical Imaging Reviews, 2024, 20: e15734056309890. [68] HUANG Y F, CAO Q Y, HUANG Y F, et al. Classification of clavicle fractures based on multi-view fusion[J]. Journal of Physics: Conference Series, 2023, 2637(1): 012033. [69] MAKWANE S, KIRAN A, BHARDWAJ S. Using swin transformer and SIFT algorithm to detect bone abnormalities[C]//Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions). Piscataway: IEEE, 2024: 1-5. [70] ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 technical report[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2303. 08774. [71] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [72] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [73] XUE L Y, YAN W N, LUO P, et al. Detection and localization of hand fractures based on GA_Faster R-CNN[J]. Alexandria Engineering Journal, 2021, 60(5): 4555-4562. [74] 杨昆, 罗萍, 吕一品, 等. 一种基于GA_Faster R-CNN的掌指骨骨折计算机辅助诊断系统[J]. 河北大学学报(自然科学版), 2021, 41(4): 412-418. YANG K, LUO P, LYU Y P, et al. A computer aided diagnosis system for metacarpal and phalangeal fracture based on GA_Faster R-CNN[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(4): 412-418. [75] THIAN Y L, LI Y T, JAGMOHAN P, et al. Convolutional neural networks for automated fracture detection and localization on wrist radiographs[J]. Radiology Artificial Intelligence, 2019, 1(1): e180001. [76] ZHANG J Y, LI Z M, LIN H, et al. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures[J]. Frontiers in Medicine, 2023, 10: 1224489. [77] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [78] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. [79] HARDALA? F, UYSAL F, PEKER O, et al. Fracture detection in wrist X-ray images using deep learning-based object detection models[J]. Sensors, 2022, 22(3): 1285. [80] WU W L, QIAN Y, SU Z H. Bone fracture detection based on faster R-CNN with bi-directional feature pyramid module[C]//Proceedings of the 2024 7th International Conference on Artificial Intelligence and Big Data. Piscataway: IEEE, 2024: 374-377. [81] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21. [82] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2405.14458. [83] JU R Y, CAI W M. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm[J]. Scientific Reports, 2023, 13: 20077. [84] AHMED A, IMRAN A S, MANAF A, et al. Enhancing wrist abnormality detection with YOLO: analysis of state-of-the-art single-stage detection models[J]. Biomedical Signal Processing and Control, 2024, 93: 106144. [85] CHIEN C T, JU R Y, CHOU K Y, et al. YOLOv8-AM: YOLOv8 with attention mechanisms for pediatric wrist fracture detection[EB/OL]. [2024-07-16]. https://arxiv.org/abs/2402.09329. [86] CHIEN C T, JU R Y, CHOU K Y, et al. YOLOv9 for fracture detection in pediatric wrist trauma X-ray images[J]. Electronics Letters, 2024, 60(11): e13248. [87] JU R Y, CHIEN C T, LIN C M, et al. Global context modeling in YOLOv8 for pediatric wrist fracture detection[EB/OL]. [2024-08-10]. https://arxiv.org/abs/2407.03163. [88] WANG R, ZHAO J, LIU X, et al. AdvYOLO: advanced YOLOv8 application for bone pathology localization and classification in wrist X-ray images[EB/OL]. [2024-08-10]. https://doi.org/10.21203/rs.3.rs-4051336/v1. [89] AHMED A, MANAF A. Pediatric wrist fracture detection in X-rays via YOLOv10 algorithm and dual label assignment system[EB/OL]. [2024-08-10]. https://arxiv.org/abs/2407. 15689. [90] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [91] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [92] ANTTILA T T, KARJALAINEN T V, M?KEL? T O, et al. Detecting distal radius fractures using a segmentation-based deep learning model[J]. Journal of Digital Imaging, 2023, 36(2): 679-687. [93] FOLLE L, MEINDERINK T, SIMON D, et al. Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density[J]. Scientific Reports, 2021, 11: 9697. [94] LEE S, KIM K G, KIM Y J, et al. Automatic segmentation and radiologic measurement of distal radius fractures using deep learning[J]. Clinics in Orthopedic Surgery, 2024, 16(1): 113-124. [95] CARL M, LALL K, PAI D, et al. Shoulder bone segmentation with DeepLab and U-Net[J]. Osteology, 2024, 4(2): 98-110. [96] HIRAOKA T, KAMIYA T, AOKI T. Automatic segmentation of finger bone regions from CR image using the improved HRNet[C]//Proceedings of the 2023 23rd International Conference on Control, Automation and Systems. Piscataway: IEEE, 2023: 1498-1501. [97] KAWAGOE K, MURAKAMI S, KAMIYA T, et al. Automatic segmentation of finger bone regions from CR images using improved U-Net and MSGVF snakes[J]. ICIC Express Letters, Part B: Applications, 2022, 13(2): 155-160. [98] AYDIN A, ?ZCAN C. Upper and lower extremity bone segmentation with Mask R-CNN[J]. Bitlis Eren üniversitesi Fen Bilimleri Dergisi, 2024, 13(1): 358-365. [99] MOON G, LEE D, KIM W J, et al. Very fast, high-resolution aggregation 3D detection CAM to quickly and accurately find facial fracture areas[J]. Computer Methods and Programs in Biomedicine, 2024, 256: 108379. [100] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM: generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. [101] HU Y L, WANG P Y, XIE Z Y, et al. Interpretable machine learning model to predict bone cement leakage in percutaneous vertebral augmentation for osteoporotic vertebral compression fracture based on Shapley additive explanations[J]. Global Spine Journal, 2025, 15(2): 689-701. [102] GLENN J. Ultralytics YOLOv8[EB/OL]. [2024-07-16]. https://github.com/ultralytics/ultralytics. [103] LYSDAHLGAARD S. Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow radiographs[J]. Radiography, 2023, 29(6): 1132-1138. [104] SU Z, ZHOU Y, ZHOU J, et al. BoneCLIP-XGBoost: a multimodal approach for bone fracture diagnosis[J]. IEEE Access, 2024, 12: 173325-173337. |
| [1] | HUA Chunjian, YAO Yetao, JIANG Yi, YU Jianfeng, CHEN Ying. RGB-D Saliency Detection with Feature Enhancement and Progressive Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2419-2429. |
| [2] | YANG Bin, MA Tinghuai, HUANG Xuejian, WANG Yubo, WANG Zhaoming, ZHAO Bowen, YU Xin. Time Series Anomaly Detection Based on Spatio-Temporal Feature Fusion and Sequence Reconstruction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2384-2398. |
| [3] | LIU Xiaojia, CHEN Hongyu, YU Dexin, CHEN Yunjie, ZHOU Yuqin. Review of Trajectory Prediction for Autonomous Vehicles Based on Short-Term and Long-Term Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2363-2383. |
| [4] | DONG Jiadong, SANG Feihu, GUO Qinghu, CHEN Lin, ZHENG Chunxiang. Review of Lightweight Object Detection Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2057-2084. |
| [5] | MIN Feng, LIU Yuzhuo, LIU Yuhui, LIU Biao. Multivariate Time Series Prediction Model Based on Mixed Features of Time Domain and Frequency Domain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2099-2109. |
| [6] | HONG Wei, GENG Peilin, WANG Hongyu, ZHANG Xueqin, GU Chunhua. Local Dynamic Clean-Label Backdoor Attack with Image Salience Regions [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2229-2240. |
| [7] | ZHANG Yifei, LI Yanling, GE Fengpei. Review of Legal Judgment Prediction Based on Graph Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2024-2042. |
| [8] | LI Shunyong, LI Jiaming, CAO Fuyuan, ZHENG Mengjiao. Deep Multi-view Clustering Network Integrating Local and Global Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2085-2098. |
| [9] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [10] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [11] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [12] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [13] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [14] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| [15] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/