[1] FANG U, LI M, LI J X, et al. A comprehensive survey on multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12350-12368.
[2] 王茜, 周世兵, 杨明瑞, 等. 多样性诱导和正交非负图重构的多视图聚类[J]. 计算机科学与探索, 2024, 18(10): 2750-2761.
WANG X, ZHOU S B, YANG M R, et al. Multi-view clustering via diversity induction and orthogonal non-negative graph reconstruction[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2750-2761.
[3] YAN W Q, ZHANG Y Y, LV C L, et al. GCFAgg: global and cross-view feature aggregation for multi-view clustering[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19863-19875.
[4] 乔宇鑫, 葛洪伟, 宋鹏. 全局与局部结构学习的多视图子空间聚类算法[J]. 计算机科学与探索, 2023, 17(9): 2107-2117.
QIAO Y X, GE H W, SONG P. Global and local structure learning for multi-view subspace clustering[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2107-2117.
[5] GUERIN J, BOOTS B. Improving image clustering with multiple pretrained CNN feature extractors[C]//Proceedings of the 29th British Machine Vision Conference, 2019: 1-13.
[6] ZHAO M Y, YANG W D, NIE F P. MVCformer: a transformer-based multi-view clustering method[J]. Information Sciences, 2023, 649: 119622-119636.
[7] WU H P, XIAO B, CODELLA N. CVT: introducing convolutions to vision transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 22-31.
[8] CUI Z, ZHOU E, DAI Z. A survey on graph-based deep learning methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(3): 547-566.
[9] HUANG S N, OTA K, DONG M X, et al. MultiSpectralNet: spectral clustering using deep neural network for multi-view data[J]. IEEE Transactions on Computational Social Systems, 2019, 6(4): 749-760.
[10] WANG W R, ARORA R, LIVESCU K, et al. On deep multi-view representation learning[C]//Proceedings of the 2nd International Conference on Machine Learning, 2015: 1083-1092.
[11] ZHAO H D, DING Z M, FU Y. Multi-view clustering via deep matrix factorization[C]//Proceedings of the 2017 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 2921-2927.
[12] ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614.
[13] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[15] ZHU P F, YAO X J, WANG Y, et al. Multiview deep subspace clustering networks[J]. IEEE Transactions on Cybernetics, 2024, 54(7): 4280-4293.
[16] WANG W, ZHANG J, ZHANG Z, et al. Deep multiview learning via conditional multimodal hashing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4921-4936.
[17] GAO R, LI Z, LIU Y, et al. Multi-view deep clustering with cross-view graph neural networks[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 796-794.
[18] LI Z Y, WANG Q Q, TAO Z Q, et al. Deep adversarial multi-view clustering network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 2952-2958.
[19] XU L, LIU J, LIN Y, et al. Multi-view clustering via joint non-negative matrix factorization and auto-encoder with cross-view consistency[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 1159-1165.
[20] JIA K, LIN J H, TAN M K, et al. Deep multi-view learning using neuron-wise correlation-maximizing regularizers[J]. IEEE Transactions on Image Processing, 2019, 28(10): 5121-5134.
[21] WANG Z, ZHANG Y, LIU J, et al. Deep canonical correlation analysis for multi-view subspace clustering[J].?IEEE Tran-sactions on Image Processing, 2018, 13(5): 115-119.
[22] PENG S Y, YIN J X, YANG Z J, et al. Multi-view clustering via hypergraph induced semi-supervised symmetric nonnegative matrix factorization[J]. IEEE Transactions on Circuits and Systems for Videotechnology, 2023, 33(10): 5510-5524.
[23] ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341.
[24] XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 2014 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2014: 2149-2155.
[25] XU J, REN Y Z, LI G F, et al. Deep embedded multi-view clustering with collaborative training[J]. Information Sciences, 2021, 573: 279-290.
[26] TROSTEN D J, L?KSE S, JENSSEN R, et al. Reconsidering representation alignment for multi-view clustering[C]//Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1255-1265.
[27] YU H, ZHANG T T, LIAN Y H, et al. Co-regularized multi-view subspace clustering[C]//Proceedings of the 10th Asian Conference on Machine Learning, 2018: 17-32.
[28] XIE D Y, GAO Q X, WANG Q Q, et al. Multi-view spectral clustering via integrating global and local graphs[J]. IEEE Access, 2019, 7: 31197-31206.
[29] WANG Y M, CHANG D X, FU Z Q, et al. Graph contrastive partial multi-view clustering[J]. IEEE Transactions on Multimedia, 2023, 25: 6551-6562.
[30] WANG S Y, LI C S, LI Y M, et al. Self-supervised information bottleneck for deep multi-view subspace clustering[J]. IEEE Transactions on Image Processing, 2023, 32: 1555-1567.
[31] HU J, YANG C H, H K, et al. Information bottleneck fusion for deep multi-view clustering[J]. Knowledge Based Systems, 2024, 289: 111551-111562. |