
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (6): 1437-1454.DOI: 10.3778/j.issn.1673-9418.2409019
• Frontiers·Surveys • Previous Articles Next Articles
MENG Xiangfu, SUN Shuonan, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng
Online:2025-06-01
Published:2025-05-29
孟祥福,孙硕男,张霄雁,冷强奎,方金凤
MENG Xiangfu, SUN Shuonan, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Trajectory Representation Learning Methods[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1437-1454.
孟祥福, 孙硕男, 张霄雁, 冷强奎, 方金凤. 轨迹表示学习方法研究综述[J]. 计算机科学与探索, 2025, 19(6): 1437-1454.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2409019
| [1] HAMDI A, SHABAN K, ERRADI A, et al. Spatiotemporal data mining: a survey on challenges and open problems[J]. Artificial Intelligence Review, 2022, 55(2): 1441-1488. [2] ZHENG Y. Trajectory data mining[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-41. [3] WANG S Z, CAO J N, YU P S. Deep learning for spatio-temporal data mining: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3681-3700. [4] WANG S, BAO Z F, CULPEPPER J S, et al. A survey on trajectory data management, analytics, and learning[J]. ACM Computing Surveys, 2022, 54(2): 1-36. [5] 曹翰林, 唐海娜, 王飞, 等. 轨迹表示学习技术研究进展[J]. 软件学报, 2021, 32(5): 1461-1479. CAO H L, TANG H N, WANG F, et al. Survey on trajectory representation learning techniques[J]. Journal of Software, 2021, 32(5): 1461-1479. [6] GRASER A, JALALI A N, LAMPERT J, et al. Deep learning from trajectory data: a review of deep neural networks and the trajectory data representations to train them[C]//Procee-dings of the 2023 Workshops of the EDBT/ICDT, 2023. [7] GUI J, CHEN T, ZHANG J, et al. A survey on self-supervised learning: algorithms, applications, and future trends[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9052-9071. [8] JIANG J W, PAN D Y, REN H X, et al. Self-supervised trajectory representation learning with temporal regularities and travel semantics[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 843-855. [9] MA Z P, TU Z Y, CHEN X H, et al. More than routing: joint GPS and route modeling for refine trajectory representation learning[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3064-3075. [10] MAZOURE B, AHMED A M, MACALPINE P, et al. Cross-trajectory representation learning for zero-shot generalization in RL[EB/OL]. [2024-07-06]. https://arxiv.org/abs/2106.02193. [11] ZHOU F, DAI Y R, GAO Q, et al. Self-supervised human mobility learning for next location prediction and trajectory classification[J]. Knowledge-Based Systems, 2021, 228: 107214. [12] MAO Z Y, LI Z Y, LI D D, et al. Jointly contrastive representation learning on road network and trajectory[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 1501-1510. [13] VETTORUZZO A, BOUGUELIA M R, VANSCHOREN J, et al. Advances and challenges in meta-learning: a technical review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(7): 4763-4779. [14] LI X H, HUANG F L, FAN Z D, et al. MetaTra: meta-learning for generalized trajectory prediction in unseen domain[EB/OL]. [2024-07-06]. https://arxiv.org/abs/2402.08221. [15] YANG B, LU Y N, WAN R, et al. Meta-IRLSOT++: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks[J]. Expert Systems with Applications, 2024, 240: 122499. [16] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. [17] FU T Y, LEE W C. Trembr[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(1): 1-25. [18] JIANG X, DE SOUZA E N, PESARANGHADER A, et al. TrajectoryNet: an embedded GPS trajectory representation for point-based classification using recurrent neural networks[EB/OL]. [2024-07-06]. https://arxiv.org/abs/1705.02636. [19] REN H M, PAN M H, LI Y H, et al. ST-SiameseNet: spatio-temporal Siamese networks for human mobility signature identification[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1306-1315. [20] LIANG S S, PAN Z, LIU W, et al. A survey on variational autoencoders in recommender systems[J]. ACM Computing Surveys, 2024, 56(10): 1-40. [21] LIU D J, LI L X, LI J. A trajectory similarity computation method based on GAT-based transformer and CNN model[J]. Scientific Reports, 2024, 14(1): 16173. [22] LUO Y Y, ZHOU Y H, TANG N, et al. Learned data-aware image representations of line charts for similarity search[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 1-29. [23] CORSO G, STARK H, JEGELKA S, et al. Graph neural networks[J]. Nature Reviews Methods Primers, 2024, 4: 17. [24] KIEU T, YANG B, GUO C J, et al. Distinguishing trajectories from different drivers using incompletely labeled trajectories[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 863-872. [25] HU X, HAN Y M, GENG Z Q. Novel trajectory representation learning method and its application to trajectory-user linking[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2511309. [26] GAO Z Y, SUN Z B. Modeling spatio-temporal interactions for vehicle trajectory prediction based on graph representation learning[C]//Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference. Piscataway: IEEE, 2021: 1334-1339. [27] YE L Y, WANG Z Z, CHEN X H, et al. GSAN: graph self-attention network for interaction measurement in autonomous driving[C]//Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems. Piscataway: IEEE, 2020: 274-282. [28] YE L Y, WANG Z Z, CHEN X H, et al. GSAN: graph self-attention network for learning spatial-temporal interaction representation in autonomous driving[J]. IEEE Internet of Things Journal, 2022, 9(12): 9190-9204. [29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [30] WU C H, XIANG L G, CHEN L B, et al. Learning universal trajectory representation via a siamese geography-aware transformer[J]. ISPRS International Journal of Geo-Information, 2024, 13(3): 64. [31] ZHOU S L, SHANG S, CHEN L S, et al. RED: effective trajectory representation learning with comprehensive information[EB/OL]. [2024-12-26]. https://arxiv.org/abs/2411.15096. [32] TSAO L W, WANG Y K, LIN H S, et al. Social-SSL: self-supervised cross-sequence representation learning based on transformers for multi-agent trajectory prediction[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 234-250. [33] GUO D Y, WU E Q, WU Y K, et al. FlightBERT: binary encoding representation for flight trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1828-1842. [34] GUO D Y, ZHANG Z, YAN Z, et al. FlightBERT++: a non-autoregressive multi-horizon flight trajectory prediction framework[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(1): 127-134. [35] ZHENG Y, ZHANG L Z, XIE X, et al. Mining interesting locations and travel sequences from GPS trajectories[C]//Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009: 791-800. [36] BAO J, ZHENG Y, MOKBEL M F. Location-based and preference-aware recommendation using sparse geo-social networking data[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. New York: ACM, 2012: 199-208. [37] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility: user movement in location-based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 1082-1090. [38] OpenStreetMap: public GPS traces[EB/OL]. [2024-08-15]. https://www.openstreetmap.org/traces. [39] ZHOU B L, WANG X G, TANG X O. Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2871-2878. [40] Data science for COVID-19 (DS4C)[EB/OL]. [2024-08-15]. https://www.kaggle.com/kimjihoo/coronavirusdataset. [41] Novel corona virus 2019 dataset[EB/OL]. [2024-08-15]. https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset. [42] YUAN J, ZHENG Y, ZHANG C Y, et al. T-drive: driving directions based on taxi trajectories[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108. [43] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Time-evolving O-D matrix estimation using high-speed GPS data streams[J]. Expert Systems with Applications, 2016, 44: 275-288. [44] TLC trip record data[EB/OL]. [2024-08-15]. https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page. [45] Next generation simulation (NGSIM) vehicle trajectories and supporting data[EB/OL]. [2024-08-15]. https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories. [46] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 2118-2125. [47] BOCK J, KRAJEWSKI R, MOERS T, et al. The InD dataset: a drone dataset of naturalistic road user trajectories at German intersections[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1929-1934. [48] CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8740-8749. [49] MA Y X, ZHU X G, ZHANG S B, et al. TrafficPredict: trajectory prediction for heterogeneous traffic-agents[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6120-6127. [50] Greek trucks[EB/OL]. [2014-08-15]. http://www.chorochronos.org/. [51] NHC data archive[EB/OL]. [2024-08-15]. https://www.nhc.noaa.gov/. [52] Movebank data[EB/OL]. [2024-08-15]. https://www.movebank.org/. [53] LI X C, ZHAO K Q, CONG G, et al. Deep representation learning for trajectory similarity computation[C]//Proceedings of the 2018 IEEE 34th International Conference on Data Engineering. Piscataway: IEEE, 2018: 617-628. [54] ZHANG Y F, LIU A, LIU G F, et al. Deep representation learning of activity trajectory similarity computation[C]//Proceedings of the 2019 IEEE International Conference on Web Services. Piscataway: IEEE, 2019: 312-319. [55] LIU A, ZHANG Y F, ZHANG X L, et al. Representation learning with multi-level attention for activity trajectory similarity computation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2387-2400. [56] FANG Z Q, DU Y T, ZHU X J, et al. Spatio-temporal trajectory similarity learning in road networks[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 347-356. [57] YANG P L, WANG H C, ZHANG Y, et al. T3S: effective representation learning for trajectory similarity computation[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 2183-2188. [58] CHEN Z W, LI K, ZHOU S L, et al. Towards robust trajectory similarity computation: representation-based spatio-temporal similarity quantification[J]. World Wide Web, 2023, 26(4): 1271-1294. [59] JING Q L, LIU S, FAN X X, et al. Can adversarial training benefit trajectory representation?: an investigation on robustness for trajectory similarity computation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 905-914. [60] LIU X, TAN X Y, GUO Y C, et al. CSTRM: contrastive self-supervised trajectory representation model for trajectory similarity computation[J]. Computer Communications, 2022, 185: 159-167. [61] LI J J, WANG M S, LI L, et al. Trajectory representation learning based on road network partition for similarity computation[C]//Proceedings of the 2023 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 396-413. [62] WANG Y F, WANG Z J, TING K M, et al. A principled distributional approach to trajectory similarity measurement and its application to anomaly detection[J]. Journal of Artificial Intelligence Research, 2024, 79: 865-893. [63] TEDJOPURNOMO D A, LI X C, BAO Z F, et al. Similar trajectory search with spatio-temporal deep representation learning[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(6): 1-26. [64] ZHAO P, RAO W X, ZHANG C X, et al. SST: synchronized spatial-temporal trajectory similarity search[J]. GeoInformatica, 2020, 24(4): 777-800. [65] FENG C H, PAN Z C, FANG J H, et al. A learning-based approach for multi-scenario trajectory similarity search[C]//Proceedings of the 2022 International Conference on Web Information Systems Engineering. Cham: Springer, 2022: 478-492. [66] CHENG M, ZHANG B W, WANG Z Y, et al. VeTraSS: vehicle trajectory similarity search through graph modeling and representation learning[EB/OL]. [2024-07-06]. https://arxiv.org/abs/2404.08021. [67] FENG C H, PAN Z C, FANG J H, et al. Aries: accurate metric-based representation learning for fast top-k trajectory similarity query[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 499-508. [68] YAO D, ZHANG C, ZHU Z H, et al. Trajectory clustering via deep representation learning[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 3880-3887. [69] YAO D, ZHANG C, ZHU Z H, et al. Learning deep representation for trajectory clustering[J]. Expert Systems, 2018, 35(2): e12252. [70] FANG Z Q, DU Y T, CHEN L, et al. E2DTC: an end to end deep trajectory clustering framework via self-training[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 696-707. [71] WANG C, HUANG J H, WANG Y H, et al. A deep spatiotemporal trajectory representation learning framework for clustering[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7687-7700. [72] CAO H C, XU F L, SANKARANARAYANAN J, et al. Habit2vec: trajectory semantic embedding for living pattern recognition in population[J]. IEEE Transactions on Mobile Computing, 2020, 19(5): 1096-1108. [73] WANG W, XIA F, NIE H S, et al. Vehicle trajectory clustering based on dynamic representation learning of Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3567-3576. [74] LIANG A Q, YAO B, WANG B, et al. Sub-trajectory clustering with deep reinforcement learning[J]. The VLDB Journal, 2024, 33(3): 685-702. [75] MURRAY B, PERERA L P. Deep representation learning-based vessel trajectory clustering for situation awareness in ship navigation[C]//Proceedings of the 5th International Conference on Maritime Technology and Engineering. London: CRC Press, 2020: 157-165. [76] YING J J, LEE W C, WENG T C, et al. Semantic trajectory mining for location prediction[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2011: 34-43. [77] YING J J, LEE W C, TSENG V S. Mining geographic-temporal-semantic patterns in trajectories for location prediction[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 5(1): 1-33. [78] LI C, LIU Z W, YANG N, et al. Regional attention network with data-driven modal representation for multimodal trajectory prediction[J]. Expert Systems with Applications, 2023, 232: 120808. [79] LIANG Y B, ZHAO Z. NetTraj: a network-based vehicle trajectory prediction model with directional representation and spatiotemporal attention mechanisms[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14470-14481. [80] SUN Z G, WANG Z X, HALILAJ L, et al. SemanticFormer: holistic and semantic traffic scene representation for trajectory prediction using knowledge graphs[J]. IEEE Robotics and Automation Letters, 2024, 9(9): 7381-7388. [81] IZQUIERDO R, QUINTANAR A, PARRA I, et al. Vehicle trajectory prediction in crowded highway scenarios using bird eye view representations and CNNs[C]//Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2020: 1-6. [82] IZQUIERDO R, QUINTANAR á, LLORCA D F, et al. Vehicle trajectory prediction on highways using bird eye view representations and deep learning[J]. Applied Intelligence, 2023, 53(7): 8370-8388. [83] HOU L, LI S E, YANG B, et al. Integrated graphical representation of highway scenarios to improve trajectory prediction of surrounding vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1638-1651. [84] ZHOU H, YANG X, FAN M Y, et al. Static-dynamic global graph representation for pedestrian trajectory prediction[J]. Knowledge-Based Systems, 2023, 277: 110775. [85] WU Y X, WANG L, ZHOU S P, et al. Multi-stream representation learning for pedestrian trajectory prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(3): 2875-2882. [86] FUJIWARA T, KUO Y H, YNNERMAN A, et al. Feature learning for nonlinear dimensionality reduction toward maximal extraction of hidden patterns[C]//Proceedings of the 2023 IEEE 16th Pacific Visualization Symposium. Piscataway: IEEE, 2023: 122-131. [87] SAKET B, ENDERT A, DEMIRALP C. Task-based effectiveness of basic visualizations[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(7): 2505-2512. [88] WANG J W, YUAN Y, NI T L, et al. Anomalous trajectory detection and classification based on difference and intersection set distance[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2487-2500. [89] WANG J Y, WU N, LU X X, et al. Deep trajectory recovery with fine-grained calibration using Kalman filter[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(3): 921-934. [90] GUO Y J, XU Q, LUO X X, et al. A group-based signal filtering approach for trajectory abstraction and restoration[J]. Neural Computing and Applications, 2018, 29(9): 371-387. [91] SUN H, YANG C J, DENG L W, et al. PeriodicMove: shift-aware human mobility recovery with graph neural network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1734-1743. [92] WANG H, HUANG Z, ZHOU X, et al. DouFu: a double fusion joint learning method for driving trajectory representation[EB/OL]. [2024-07-19]. https://arxiv.org/abs/2205.08356. [93] LUO K, ZHU Y S, CHEN W, et al. Towards robust trajectory representations: isolating environmental confounders with causal learning[EB/OL]. [2024-07-19]. https://arxiv.org/abs/2404.14073. [94] DE MONTJOYE Y A, HIDALGO C A, VERLEYSEN M, et al. Unique in the crowd: the privacy bounds of human mobility[J]. Scientific Reports, 2013, 3: 1376. [95] LI S Y, SHEN H, SANG Y P, et al. An efficient method for privacy-preserving trajectory data publishing based on data partitioning[J]. The Journal of Supercomputing, 2020, 76(7): 5276-5300. [96] ALHARBI B, ZHANG X L. Learning from your network of friends: a trajectory representation learning model based on online social ties[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 781-786. [97] YAN X Y, WU Q L, SUN Y M. A homomorphic encryption and privacy protection method based on blockchain and edge computing[J]. Wireless Communications and Mobile Computing, 2020(1): 8832341. [98] WANG H J, XIAO Y, FENG Y, et al. Cloud-assisted privacy protection energy trading based on IBS and homomorphic encryption in IIoT[J]. Applied Sciences, 2022, 12(19): 9509. [99] YI J W, WU F Z, WU C H, et al. Efficient-FedRec: efficient federated learning framework for privacy-preserving news recommendation[EB/OL]. [2024-07-19]. https://arxiv.org/abs/ 2109.05446. [100] WANG W L, WANG Y J, DUAN P Y, et al. A triple real-time trajectory privacy protection mechanism based on edge computing and blockchain in mobile crowdsourcing[J]. IEEE Transactions on Mobile Computing, 2023, 22(10): 5625-5642. |
| [1] | LIU Guihong, ZHOU Zongrun, MENG Xiangfu. Pedestrian Trajectory Prediction Based on Transformer and Multi-relation Graph Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. |
| [2] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [3] | CAI Mingxin, SUN Jing, WANG Bin. Multi-aspect Semantic Trajectory Similarity Computation Model [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1632-1640. |
| [4] | JIANG Yun, HE Wei, CUI Lizhen, YANG Qian, LIU Lei. Mobile Context and User Trajectory Awareness Crowdsourcing Service Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1471-1480. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/