[1] Liu X L, Hou F, Qin H, et al. A CADe system for nodule detection in thoracic CT images based on artificial neural network[J]. Science China Information Sciences, 2017, 60(7): 072106.
[2] Zheng G Y, Liu X B, Han G H. Survey on medical image computer aided detection and diagnosis systems[J]. Journal of Software, 2018, 29(5): 1471-1514. 郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5): 1471-1514.
[3] Chen S Y, Chao Y, Zou L. Detection of solitary pulmonary nodules based on geometric features[J]. Journal of Biomedical Engineering, 2016, 33(4): 680-685. 陈树越, 晁亚, 邹凌. 基于几何特征的孤立性肺结节检测[J]. 生物医学工程学杂志, 2016, 33(4): 680-685.
[4] van Ginneken B, Iii S G A, Hoop B D, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study[J]. Medical Image Analysis, 2010, 14(6): 707-722.
[5] Greenspan H, Ginneken B, Summers R M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1153-1159.
[6] van Ginneken B, Setio A A A, Jacobs C, et al. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans[C]//Proceedings of the 12th International Symposium on Biomedical Imaging, Brooklyn, Apr 16-19, 2015. Piscataway: IEEE, 2015: 286-289.
[7] Anthimopoulos M, Christodoulidis S, Ebner L, et al. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1207-1216.
[8] Setio A A A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160-1169.
[9] Dou Q, Chen H, Jin Y M, et al. Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning[C]//LNCS 10435: Proceedings of the 20th International Conference on Medical Image Com-puting & Computer-Assisted Intervention, Quebec City, Sep 11-13, 2017. Berlin, Heidelberg: Springer, 2017: 630-638.
[10] Wu C R, Jie B, Ye M Q. Reviews on computer-aided detection and diagnosis of pulmonary nodules in CT images[J]. Data Acquisition and Processing, 2016, 31(5): 868-881. 伍长荣, 接标, 叶明全. CT图像肺结节计算机辅助检测与诊断技术研究综述[J]. 数据采集与处理, 2016, 31(5): 868-881.
[11] Sato Y, Nakajima S, Shiraga N, et al. 3D multi-scale line filter for segmentation and visualization of curvilinear struc-tures in medical images[C]//LNCS 1205: Proceedings of the 1st Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Grenoble, Mar 19-22, 1997. Berlin, Hei-delberg: Springer, 1997: 213-222.
[12] Yankelevitz D F, Reeves A P, Kostis W J, et al. Small pul-monary nodules: volumetrically determined growth rates based on CT evaluation[J]. Radiology, 2000, 217(1): 251-256.
[13] Kostis W J, Reeves A P, Yankelevitz D F, et al. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images[J]. IEEE Transac-tions on Medical Imaging, 2003, 22(10): 1259-1274.
[14] Dehmeshki J, Amin H, Valdivieso M, et al. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach[J]. IEEE Transactions on Medical Imaging, 2008, 27(4): 467-480.
[15] Way T W, Sahiner Bchan H P. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classifica-tion performance with nodule surface features[J]. Medical Physics, 2009, 36(7): 3086-3098.
[16] Orozco H M, Villegas O O V, Sánchez V G C, et al. Auto-mated system for lung nodules classification based on wavelet feature descriptor and support vector machine[J]. BioMedical Engineering OnLine, 2015, 14(1): 9.
[17] Firmino M, Angelo G, Morais H, et al. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy[J]. BioMedical Engin-eering OnLine, 2016, 15(1): 2.
[18] Francesco C, Hoop B D, Riel S V, et al. Automatic class-ification of pulmonary peri-fissural nodules in computed to-mography using an ensemble of 2D views and a convolu-tional neural network out-of-the-box[J]. Medical Image Analysis, 2015, 26(1): 195-202.
[19] Yang F, Xie H W, Liu A Y. Lung nodule classification algorithm based on convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(7): 145-150. 杨帆, 谢红薇, 刘爱媛. 基于卷积神经网络的肺结节分类算法[J]. 计算机工程与应用, 2019, 55(7): 145-150.
[20] Pinheiro C A D P, Nedjah N, Mourelle L D M. Detection and classification of pulmonary nodules using deep learning and swarm intelligence[J]. Multimedia Tools and Applications, 2019(2): 1-29.
[21] Zhang G, Zhu D, Liu X, et al. Multi-scale pulmonary nodule classification with deep feature fusion via residual network[J]. Journal of Ambient Intelligence and Humanized Computing, 2018.
[22] Karpathy A, Joulin A, Li F F. Deep fragment embeddings for bidirectional image sentence mapping[C]//Proceedings of the 2014 International Conference on Neural Information Processing Systems, Montreal, Nov 3-6, 2014. Cambridge: MIT Press, 2014: 1889-1897.
[23] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. arXiv:1505. 04597, 2015.
[24] Gillies R J, Kinahan P E, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2015, 278(2): 563-577.
[25] Lin T Y, Dollár P, Girshick R B, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[26] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[27] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-cation with deep convolutional neural networks[J]. Com-munications of the ACM, 2017, 60(6): 84-90.
[28] Armato S G, Hadjiiski L, Tourassi G D, et al. Guest editorial: LUNGx challenge for computerized lung nodule classifica-tion: reflections and lessons learned[J]. Journal of Medical Imaging, 2015, 2(2): 020103.
[29] Chen S. Pre-diagnosis research of lung cancer based on CT image[D]. Chengdu: University of Electronic Science and Technology of China, 2018. 陈实. 基于CT图像的肺癌前期辅助诊断研究[D]. 成都: 电子科技大学, 2018.
[30] Wang H H. Deep learning based pulmonary nodule detection algorithms for medical images[D]. Xi??an: Xidian University, 2018. 王厚华. 基于深度学习的医学图像肺结节检测算法研究[D]. 西安: 西安电子科技大学, 2018. |