Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2505-2518.DOI: 10.3778/j.issn.1673-9418.2104075
• Network and Information Security • Previous Articles Next Articles
WANG Benyu, GU Yijun+(), PENG Shufan
Received:
2021-04-02
Revised:
2021-05-17
Online:
2022-11-01
Published:
2021-05-25
About author:
WANG Benyu, born in 1998, M.S. candidate. His research interests include complex network and deep learning.Supported by:
通讯作者:
+ E-mail: guyijun@ppsuc.edu.cn作者简介:
王本钰(1998—),男,江苏盐城人,硕士研究生,主要研究方向为复杂网络、深度学习。基金资助:
CLC Number:
WANG Benyu, GU Yijun, PENG Shufan. Social Network Embedding Method Combining Node Attributes and Loop-Free Path[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2505-2518.
王本钰, 顾益军, 彭舒凡. 融合节点属性和无环路径的社交网络嵌入方法[J]. 计算机科学与探索, 2022, 16(11): 2505-2518.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104075
Datasets | Nodes | Edges | Attributes | Label |
---|---|---|---|---|
BlogCatalog | 5 196 | 171 743 | 8 189 | 6 |
Flickr | 7 575 | 239 738 | 12 047 | 9 |
1 005 | 25 751 | 42 | — |
Table 1 Basic information of real network datasets
Datasets | Nodes | Edges | Attributes | Label |
---|---|---|---|---|
BlogCatalog | 5 196 | 171 743 | 8 189 | 6 |
Flickr | 7 575 | 239 738 | 12 047 | 9 |
1 005 | 25 751 | 42 | — |
Datasets | Structure of autoencoder |
---|---|
BlogCatalog | 5 196-1 024-256 |
Flickr | 7 375-2 048-256 |
Email-Eu-core | 1 005-512-64 |
Table 2 Structure of stacked denoising autoencoder under different datasets
Datasets | Structure of autoencoder |
---|---|
BlogCatalog | 5 196-1 024-256 |
Flickr | 7 375-2 048-256 |
Email-Eu-core | 1 005-512-64 |
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.583 5 | 0.653 1 | 0.674 3 | 0.692 4 | 0.683 4 |
node2vec | 0.597 1 | 0.642 3 | 0.670 1 | 0.681 7 | 0.676 6 |
DNGR | 0.666 3 | 0.674 5 | 0.702 5 | 0.707 7 | 0.712 3 |
SDNE | 0.674 3 | 0.714 2 | 0.735 6 | 0.729 5 | 0.738 3 |
TADW | 0.796 3 | 0.829 1 | 0.832 1 | 0.821 4 | 0.865 3 |
DANE | 0.785 2 | 0.833 4 | 0.848 1 | 0.836 6 | 0.873 3 |
LFNE | 0.836 4 | 0.878 8 | 0.887 5 | 0.869 3 | 0.873 1 |
Table 3 Micro-F1 of node classification on BlogCatalog dataset
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.583 5 | 0.653 1 | 0.674 3 | 0.692 4 | 0.683 4 |
node2vec | 0.597 1 | 0.642 3 | 0.670 1 | 0.681 7 | 0.676 6 |
DNGR | 0.666 3 | 0.674 5 | 0.702 5 | 0.707 7 | 0.712 3 |
SDNE | 0.674 3 | 0.714 2 | 0.735 6 | 0.729 5 | 0.738 3 |
TADW | 0.796 3 | 0.829 1 | 0.832 1 | 0.821 4 | 0.865 3 |
DANE | 0.785 2 | 0.833 4 | 0.848 1 | 0.836 6 | 0.873 3 |
LFNE | 0.836 4 | 0.878 8 | 0.887 5 | 0.869 3 | 0.873 1 |
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.576 5 | 0.651 3 | 0.671 1 | 0.684 8 | 0.675 4 |
node2vec | 0.587 3 | 0.637 4 | 0.664 2 | 0.685 6 | 0.680 1 |
DNGR | 0.669 6 | 0.671 2 | 0.693 4 | 0.701 2 | 0.718 8 |
SDNE | 0.664 5 | 0.707 6 | 0.729 6 | 0.721 5 | 0.734 5 |
TADW | 0.799 6 | 0.814 1 | 0.823 1 | 0.810 6 | 0.857 4 |
DANE | 0.778 7 | 0.826 9 | 0.831 4 | 0.831 9 | 0.856 5 |
LFNE | 0.829 6 | 0.870 1 | 0.883 1 | 0.860 1 | 0.867 3 |
Table 4 Macro-F1 of node classification on BlogCatalog dataset
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.576 5 | 0.651 3 | 0.671 1 | 0.684 8 | 0.675 4 |
node2vec | 0.587 3 | 0.637 4 | 0.664 2 | 0.685 6 | 0.680 1 |
DNGR | 0.669 6 | 0.671 2 | 0.693 4 | 0.701 2 | 0.718 8 |
SDNE | 0.664 5 | 0.707 6 | 0.729 6 | 0.721 5 | 0.734 5 |
TADW | 0.799 6 | 0.814 1 | 0.823 1 | 0.810 6 | 0.857 4 |
DANE | 0.778 7 | 0.826 9 | 0.831 4 | 0.831 9 | 0.856 5 |
LFNE | 0.829 6 | 0.870 1 | 0.883 1 | 0.860 1 | 0.867 3 |
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.433 1 | 0.502 1 | 0.513 3 | 0.519 6 | 0.524 3 |
node2vec | 0.418 5 | 0.479 5 | 0.510 7 | 0.518 4 | 0.525 5 |
DNGR | 0.476 3 | 0.521 2 | 0.571 4 | 0.596 3 | 0.612 2 |
SDNE | 0.501 4 | 0.541 7 | 0.568 4 | 0.594 7 | 0.603 3 |
TADW | 0.645 3 | 0.694 5 | 0.701 6 | 0.721 3 | 0.731 1 |
DANE | 0.654 8 | 0.706 3 | 0.719 4 | 0.734 5 | 0.741 4 |
LFNE | 0.713 6 | 0.726 7 | 0.736 6 | 0.752 1 | 0.770 5 |
Table 5 Micro-F1 of node classification on Flickr dataset
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.433 1 | 0.502 1 | 0.513 3 | 0.519 6 | 0.524 3 |
node2vec | 0.418 5 | 0.479 5 | 0.510 7 | 0.518 4 | 0.525 5 |
DNGR | 0.476 3 | 0.521 2 | 0.571 4 | 0.596 3 | 0.612 2 |
SDNE | 0.501 4 | 0.541 7 | 0.568 4 | 0.594 7 | 0.603 3 |
TADW | 0.645 3 | 0.694 5 | 0.701 6 | 0.721 3 | 0.731 1 |
DANE | 0.654 8 | 0.706 3 | 0.719 4 | 0.734 5 | 0.741 4 |
LFNE | 0.713 6 | 0.726 7 | 0.736 6 | 0.752 1 | 0.770 5 |
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.431 4 | 0.497 4 | 0.508 5 | 0.516 6 | 0.521 4 |
node2vec | 0.414 7 | 0.473 4 | 0.506 6 | 0.512 1 | 0.521 7 |
DNGR | 0.471 1 | 0.516 7 | 0.564 1 | 0.587 4 | 0.604 5 |
SDNE | 0.497 1 | 0.536 4 | 0.561 4 | 0.587 6 | 0.594 1 |
TADW | 0.638 4 | 0.681 4 | 0.707 7 | 0.711 5 | 0.724 5 |
DANE | 0.646 3 | 0.692 1 | 0.714 5 | 0.734 7 | 0.748 4 |
LFNE | 0.708 5 | 0.713 4 | 0.733 1 | 0.752 4 | 0.766 3 |
Table 6 Macro-F1 of node classification on Flickr dataset
Model | Ratio of training sample | ||||
---|---|---|---|---|---|
10% | 30% | 50% | 70% | 90% | |
DeepWalk | 0.431 4 | 0.497 4 | 0.508 5 | 0.516 6 | 0.521 4 |
node2vec | 0.414 7 | 0.473 4 | 0.506 6 | 0.512 1 | 0.521 7 |
DNGR | 0.471 1 | 0.516 7 | 0.564 1 | 0.587 4 | 0.604 5 |
SDNE | 0.497 1 | 0.536 4 | 0.561 4 | 0.587 6 | 0.594 1 |
TADW | 0.638 4 | 0.681 4 | 0.707 7 | 0.711 5 | 0.724 5 |
DANE | 0.646 3 | 0.692 1 | 0.714 5 | 0.734 7 | 0.748 4 |
LFNE | 0.708 5 | 0.713 4 | 0.733 1 | 0.752 4 | 0.766 3 |
[1] |
TU C, YANG C, LIU Z, et al. Network representation learning: an overview[J]. Scientia Sinica Informationis, 2017, 47(8): 980-996.
DOI URL |
[2] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710. |
[3] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. arXiv:1310.4546, 2013. |
[4] | TANG J, QU M, WANG M, et al. Line: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077. |
[5] | CAO S, LU W, XU Q. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 891-900. |
[6] | GROVER A, LESKOVEC J. Node2vec: scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 24-27, 2016. New York: ACM, 2016: 855-864. |
[7] | CAO S, LU W, XU Q. Deep neural networks for learning graph representations[C]// Proceedings of the 2016 AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1145-1152. |
[8] | WANG D, CUI P, ZHU W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. |
[9] | RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural identity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 385-394. |
[10] | WANG C, WANG C, WANG Z, et al. Edge2vec: edge-based social network embedding[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(4): 1-24. |
[11] | YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2111-2117. |
[12] | TU C, LIU H, LIU Z, et al. CANE: context-aware network embedding for relation modeling[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1722-1731. |
[13] | HUANG X, LI J, HU X. Accelerated attributed network embedding[C]// Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Apr 27-29, 2017. Philadelphia: SIAM, 2017: 633-641. |
[14] | BANDYOPADHYAY S, LOKESH N, MURTY M N. Outlier aware network embedding for attributed networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 12-19. |
[15] |
HONG R C, HE Y, WU L, et al. Deep attributed network embedding by preserving structure and attribute information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(3): 1434-1445.
DOI URL |
[16] |
NOZZA D, FERSINI E, MESSINA E. CAGE: constrained deep attributed graph embedding[J]. Information Sciences, 2020, 518: 56-70.
DOI URL |
[17] | NEWMAN M E J. Clustering and preferential attachment in growing networks[J]. Physical Review E, 2001, 64(2): 025102. |
[18] | CHOWDHURY G G. Introduction to modern information retrieval[M]. London: Facet Publishing, 2010. |
[19] |
RAVASZ E, SOMERA A L, MONGRU D A, et al. Hierarchical organization of modularity in metabolic networks[J]. Science, 2002, 297(5586): 1551-1555.
DOI URL |
[20] | LEICHT E A, HOLME P, NEWMAN M E J. Vertex similarity in networks[J]. Physical Review E, 2006, 73(2): 026120. |
[21] |
KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39-43.
DOI URL |
[22] |
ZHOU T, LÜ L, ZHANG Y C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630.
DOI URL |
[23] |
CHEN Z, XIE Z, ZHANG Q. Community detection based on local topological information and its application in power grid[J]. Neurocomputing, 2015, 170: 384-392.
DOI URL |
[24] |
WU J, CHENG N, ZHOU C, et al. Computing the number of loop-free k-hop paths of networks[J]. IEEE Transactions on Services Computing, 2022, 15(4): 2114-2128.
DOI URL |
[25] | LV L Y, JIN C H, ZHOU T. Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80(4): 046122. |
[26] | 唐晋韬, 王挺, 王戟. 适合复杂网络分析的最短路径近似算法[J]. 软件学报, 2011, 22(10): 2279-2290. |
TANG J T, WANG T, WANG J. Shortest path approximate algorithm for complex network analysis[J]. Journal of Software, 2011, 22(10): 2279-2290.
DOI URL |
|
[27] | LE GALL F. Powers of tensors and fast matrix multiplication[C]// Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, Kobe, Jul 23-25, 2014. New York: ACM, 2014: 296-303. |
[28] | HUANG X, LI J, HU X. Label informed attributed network embedding[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 731-739. |
[29] | GAO H, HUANG H. Self-paced network embedding[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1406-1415. |
[30] |
FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874.
DOI URL |
[1] | WANG Xuechun, LYU Shengkai, WU Hao, HE Peng, ZENG Cheng. Research on Service Recommendation Method of Multi-network Hybrid Embed-ding Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1529-1542. |
[2] | CHEN Jiangmei, ZHANG Wende. Review of Point of Interest Recommendation Systems in Location-Based Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478. |
[3] | YANG Shuxin, SONG Jianbin, LIANG Wen. Cut-Vertex-Based Influence Maximization Problem in Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1316-1326. |
[4] | LIU Wenxing, FAN Min, LI Jinhai. Research on Community Division Method Under Network Formal Context [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1441-1449. |
[5] | CHEN Jie, CHEN Jialin, ZHAO Shu, ZHANG Yanping. Hierarchical Labels Guided Attributed Network Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1279-1288. |
[6] | DUAN Xiangyu, YUAN Guan, MENG Fanrong. Dynamic Community Detection: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 612-630. |
[7] | GAO Ang, LIANG Ying, XIE Xiaojie, WANG Zisen, LI Jintao. Social Network Information Diffusion Method with Support of Privacy Protection [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 233-248. |
[8] | GUO Yi, XU Liang, XIONG Xuejun. Survey on Methods of Opinion Leader Mining in Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2077-2092. |
[9] | LI Na, ZHU Huaijie, LIU Wei, YIN Jian. Geo-Socially Tenuous Group Query [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2151-2160. |
[10] | LI Xiang, SHEN Derong, FENG Shuo, KOU Yue, NIE Tiezheng. Cross-Network User Identification Using Global Seed and Optimal Local Extension [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 928-938. |
[11] | FENG Yong, ZHANG Bingru, XU Hongyan, WANG Rongbing, ZHANG Yonggang. Community Detection Algorithms Combining Improved Differential Evolution and Modularity Density [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1070-1080. |
[12] | QIAN Fulan, XU Tao, ZHAO Shu, ZHANG Yanping. Local Probability Solution Based Immune Genetic Influence Maximization Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 783-791. |
[13] | ZHANG Buling, WANG Xingwei, LI Jie, YI Bo, HUANG Min. Friend Circle and Node Awareness Based Content Centric MSN Routing Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 51-58. |
[14] | DONG Xiangxiang, GAO Ang, LIANG Ying, BI Xiaodi. Method of Privacy Preserving in Dynamic Social Network Data Publication [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1441-1458. |
[15] | WANG Yao, KOU Yue, SHEN Derong, NIE Tiezheng, YU Ge. Link Prediction Using Meta-Path Selection and Matrix Factorization Across Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1459-1470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/