Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2587-2595.DOI: 10.3778/j.issn.1673-9418.2103044
• Graphics and Image • Previous Articles Next Articles
Received:
2021-03-15
Revised:
2021-06-08
Online:
2022-11-01
Published:
2021-06-16
About author:
LI Rui, born in 1971, M.S., professor. Her research interests include intelligent information processing, pattern recognition and artificial intelligence.Supported by:
通讯作者:
+ E-mail: 649094574@qq.com作者简介:
李睿(1971—),女,甘肃秦安人,硕士,教授,主要研究方向为智能信息处理、模式识别、人工智能。基金资助:
CLC Number:
LI Rui, LIAN Jirong. Improved Siamese Adaptive Network and Multi-feature Fusion Tracking Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2587-2595.
李睿, 连继荣. 改进的Siamese自适应网络和多特征融合跟踪算法[J]. 计算机科学与探索, 2022, 16(11): 2587-2595.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2103044
算法名称 | 成功率 | 精度 | 速度/(frame/s) |
---|---|---|---|
Ours | 0.804 | 0.831 | 63.82 |
Struck | 0.559 | 0.656 | 14.45 |
LOT | 0.413 | 0.522 | 35.62 |
TLD | 0.521 | 0.608 | 45.53 |
CT | 0.348 | 0.406 | 20.59 |
SMS | 0.185 | 0.337 | 89.57 |
MTT | 0.445 | 0.475 | 49.83 |
CSK | 0.443 | 0.545 | 94.66 |
Table 1 Performance comparison between proposed algorithm and existing trackers
算法名称 | 成功率 | 精度 | 速度/(frame/s) |
---|---|---|---|
Ours | 0.804 | 0.831 | 63.82 |
Struck | 0.559 | 0.656 | 14.45 |
LOT | 0.413 | 0.522 | 35.62 |
TLD | 0.521 | 0.608 | 45.53 |
CT | 0.348 | 0.406 | 20.59 |
SMS | 0.185 | 0.337 | 89.57 |
MTT | 0.445 | 0.475 | 49.83 |
CSK | 0.443 | 0.545 | 94.66 |
名称 | 成功率 | 精度 | 速度/(frame/s) |
---|---|---|---|
N1 | 0.586 | 0.642 | 80.35 |
N2 | 0.713 | 0.686 | 68.61 |
N3 | 0.786 | 0.813 | 62.54 |
F1 | 0.467 | 0.516 | 98.96 |
F2 | 0.424 | 0.498 | 25.31 |
F3 | 0.658 | 0.579 | 56.32 |
M1 | 0.864 | 0.882 | 48.69 |
M2 | 0.753 | 0.806 | 92.73 |
Table 2 Algorithm internal comparison
名称 | 成功率 | 精度 | 速度/(frame/s) |
---|---|---|---|
N1 | 0.586 | 0.642 | 80.35 |
N2 | 0.713 | 0.686 | 68.61 |
N3 | 0.786 | 0.813 | 62.54 |
F1 | 0.467 | 0.516 | 98.96 |
F2 | 0.424 | 0.498 | 25.31 |
F3 | 0.658 | 0.579 | 56.32 |
M1 | 0.864 | 0.882 | 48.69 |
M2 | 0.753 | 0.806 | 92.73 |
[1] |
陈晨, 邓赵红, 高艳丽, 等. 多模糊核融合的单目标跟踪算法[J]. 计算机科学与探索, 2020, 14(5): 848-860.
DOI |
CHEN C, DENG Z H, GAO Y L, et al. Single target trac-king algorithm based on multi-fuzzy kernel fusion[J]. Jour-nal of Frontiers of Computer Science and Technology, 2020, 14(5): 848-860. | |
[2] |
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76.
DOI |
LU H C, LI P X, WANG D. Visual object tracking: a survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76.
DOI |
|
[3] |
YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
DOI URL |
[4] | KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking learning-detection[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2012, 34(7): 1409-1422. |
[5] | LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8971-8980. |
[6] | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]// LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Cham: Springer, 2016: 850-865. |
[7] | ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]// LNCS 11213: Procee-dings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 103-119. |
[8] | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]// Pro-ceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Pis-cataway: IEEE, 2019: 4282-4291. |
[9] | GUO D, WANG J, CUI Y, et al. SiamCAR: siamese fully convolutional classification and regression for visual trac-king[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6268-6276. |
[10] | SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: an experimental survey[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1442-1468. |
[11] | 汪洪桥, 蔡艳宁, 孙富春, 等. 多尺度核方法的自适应序列学习及应用[J]. 模式识别与人工智能, 2011, 24(1): 72-81. |
WANG H Q, CAI Y N, SUN F C, et al. Adaptive sequence learning and applications for multi-scale kernel method[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1):72-81. | |
[12] |
王玲, 王家沛, 王鹏, 等. 融合注意力机制的孪生网络目标跟踪算法研究[J]. 计算机工程与应用, 2021, 57(8): 169-174.
DOI |
WANG L, WANG J P, WANG P, et al. Research on target tracking algorithm of twin network fusion attention mecha-nism[J]. Computer Engineering and Applications, 2021, 57(8): 169-174.
DOI |
|
[13] |
单玉刚, 胡卫国. 尺度方向自适应视觉目标跟踪方法综述[J]. 计算机工程与应用, 2020, 56(9): 13-23.
DOI |
SHAN Y G, HU W G. A survey of adaptive vision target tracking methods in scale and direction[J]. Computer Enginee-ring and Applications, 2020, 56(9): 13-23. | |
[14] | HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. |
[15] | POSSEGGER H, MAUTHNER T, BISCHOF H. In defense of color-based model-free tracking[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Re-cognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 2113-2120. |
[16] | VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End-to-end representation learning for correlation filter based tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5000-5008. |
[17] | GAO J Y, ZHANG T Z, XU C S. Graph convolutional trac-king[C]// Proceedings of the 2019 IEEE Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4649-4659. |
[18] | ZHANG L, VARADARAJAN J, SUGANTHAN P N, et al. Robust visual tracking using oblique random forests[C]// Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 5825-5834. |
[19] | DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pat-tern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4660-4669. |
[20] | MA C, HUANG J B, YANG X K, et al. Hierarchical con-volutional features for visual tracking[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer So-ciety, 2015: 3074-3082. |
[21] | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]// Procee-dings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washing-ton: IEEE Computer Society, 2010: 2544-2550. |
[22] | LI F, YAO Y J, LI P H, et al. Integrating boundary and cen-ter correlation filters for visual tracking with aspect ratio variation[C]// Proceedings of the 2017 IEEE International Con-ference on Computer Vision Workshops, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2001-2009. |
[23] | ZHANG J, MA S, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]// LNCS 8694: Proceedings of the 13th European Conference on Com-puter Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 188-203. |
[24] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI URL |
[25] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer So-ciety, 2016: 770-778. |
[26] | KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking vot2017 challenge results[C]// Proceedings of the 2017 IEEE International Conference on Computer Vi-sion, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1949-1972. |
[27] | WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2015, 37(9): 1834-1848. |
[28] |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
DOI URL |
[29] | HARE S, GOLODETZ S, SAFFARI A, et al. Struck: struc-tured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 65(5): 2096-2109. |
[30] |
ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[J]. International Journal of Computer Vision, 2015, 111(2): 213-228.
DOI URL |
[31] | KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural constraints[C]// Proceedings of the 23rd IEEE Conference on Computer Vi-sion and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 49-56. |
[32] | ZHANG K H, ZHANG L, YANG M H. Real-time compre-ssive tracking[C]// LNCS 7574: Proceedings of the 12th Euro-pean Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 864-877. |
[33] | COLLINS R T. Mean-shift blob tracking through scale space[C]// Proceedings of the 2003 IEEE Computer Society Con-ference on Computer Vision and Pattern Recognition, Ma-dison, Jun 16-22, 2003. Washington: IEEE Computer So-ciety, 2003: 234-240. |
[34] | ZHANG T Z, GHANEM B, LIU S, et al. Robust visual trac-king via multi-task sparse learning[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Re-cognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2042-2049. |
[35] | HENRIQUES J F, RUI C, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// LNCS 7575: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Hei-delberg: Springer, 2012: 702-715. |
[1] | YANG Zheng, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. Target Tracking System Constructed by ELM-AE and Transfer Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1633-1648. |
[2] | PENG Hao, LI Xiaoming. Multi-scale Selection Pyramid Networks for Small-Sample Target Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1649-1660. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[5] | ZHAO Yunji, FAN Cunliang, ZHANG Xinliang. Object Tracking Algorithm with Fusion of Multi-feature and Channel Awareness [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1417-1428. |
[6] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[7] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[8] | BAO Guangbin, LI Gangle, WANG Guoxiong. Bimodal Interactive Attention for Multimodal Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 909-916. |
[9] | CHENG Shilong, XIE Linbo, PENG Li. Gradient-Guided Object Tracking Algorithm with Channel Selection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 649-660. |
[10] | WANG Yanni, YU Lixian. SSD Object Detection Algorithm with Effective Fusion of Attention and Multi-scale [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447. |
[11] | CHEN Fan, PENG Li. Person Re-identification Based on Heterogeneous Branch Correlative Features Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2609-2618. |
[12] | YU Ying, PAN Cheng, ZHU Huilin, QIAN Jin, TANG Hong. Encoder-Decoder Network Fusing Channel and Spatial Attention for Crowd Counting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2547-2556. |
[13] | LI Qingyuan, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. SSD Object Detection Algorithm with Attention and Cross-Scale Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2575-2586. |
[14] | LI Zhixin, CHEN Shengjia, ZHOU Tao, MA Huifang. Combining Cascaded Network and Adversarial Network for Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 217-230. |
[15] | QIAN Wu, WANG Guozhong, LI Guoping. Improved YOLOv5 Traffic Light Real-Time Detection Robust Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 231-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/