Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2775-2787.DOI: 10.3778/j.issn.1673-9418.2103085
• Artificial Intelligence • Previous Articles Next Articles
XU Guangsheng1,2,+(), WANG Shitong1,2
Received:
2021-03-24
Revised:
2021-06-15
Online:
2022-12-01
Published:
2021-06-23
About author:
XU Guangsheng, born in 1996, M.S. candidate.His research interests include artificial intelligence and machine learning.Supported by:
通讯作者:
+E-mail: 6191610015@stu.jiangnan.edu.cn作者简介:
徐光生(1996—),男,安徽芜湖人,硕士研究生,主要研究方向为人工智能、机器学习。基金资助:
CLC Number:
XU Guangsheng, WANG Shitong. Incomplete Modality Transfer Learning via Latent Low-Rank Constraint[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2775-2787.
徐光生, 王士同. 基于潜在的低秩约束的不完整模态迁移学习[J]. 计算机科学与探索, 2022, 16(12): 2775-2787.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2103085
Datasets | Subspace methods | DASA | GFK | RDALR | MEDA | MMTL | IMTL |
---|---|---|---|---|---|---|---|
BUAANIR | PCA | 76.15±0.55 | 74.33±0.65 | 72.86±0.86 | 46.33±0.33 | 75.90±0.38 | 80.72±0.77 |
LPP | 71.56±0.22 | 70.86±0.84 | 68.73±0.84 | 71.84±0.26 | 75.72±0.25 | 78.68±0.02 | |
LDA | 68.64±0.27 | 67.41±0.89 | 60.87±0.05 | 21.61±0.65 | 74.64±0.37 | 77.57±0.21 | |
BUAAVIS | PCA | 57.73±0.47 | 57.21±0.88 | 59.29±0.90 | 34.41±0.96 | 56.20±0.28 | 66.22±0.34 |
LPP | 54.81±0.93 | 62.09±0.56 | 53.76±0.55 | 48.09±0.05 | 55.95±0.98 | 70.25±0.42 | |
LDA | 71.28±0.29 | 57.18±0.65 | 45.72±0.54 | 22.25±0.14 | 55.33±0.24 | 68.92±0.03 | |
OuluNIR | PCA | 69.12±0.44 | 72.20±0.23 | 71.86±0.09 | 76.43±0.04 | 72.91±0.27 | 78.04±0.73 |
LPP | 72.30±0.92 | 75.44±0.08 | 62.70±0.50 | 78.63±0.05 | 71.18±0.63 | 83.04±0.84 | |
LDA | 34.12±0.81 | 49.63±0.92 | 43.10±0.60 | 68.81±0.02 | 71.89±0.36 | 79.39±0.32 | |
OuluVIS | PCA | 87.33±0.95 | 86.99±0.11 | 86.49±0.14 | 80.78±0.73 | 87.37±0.39 | 92.43±0.75 |
LPP | 86.39±0.87 | 84.33±0.04 | 57.26±0.42 | 86.07±0.02 | 88.01±0.79 | 90.47±0.26 | |
LDA | 71.18±0.09 | 80.71±0.48 | 49.60±0.19 | 87.77±0.01 | 88.14±0.52 | 92.87±0.46 |
Table 1
Datasets | Subspace methods | DASA | GFK | RDALR | MEDA | MMTL | IMTL |
---|---|---|---|---|---|---|---|
BUAANIR | PCA | 76.15±0.55 | 74.33±0.65 | 72.86±0.86 | 46.33±0.33 | 75.90±0.38 | 80.72±0.77 |
LPP | 71.56±0.22 | 70.86±0.84 | 68.73±0.84 | 71.84±0.26 | 75.72±0.25 | 78.68±0.02 | |
LDA | 68.64±0.27 | 67.41±0.89 | 60.87±0.05 | 21.61±0.65 | 74.64±0.37 | 77.57±0.21 | |
BUAAVIS | PCA | 57.73±0.47 | 57.21±0.88 | 59.29±0.90 | 34.41±0.96 | 56.20±0.28 | 66.22±0.34 |
LPP | 54.81±0.93 | 62.09±0.56 | 53.76±0.55 | 48.09±0.05 | 55.95±0.98 | 70.25±0.42 | |
LDA | 71.28±0.29 | 57.18±0.65 | 45.72±0.54 | 22.25±0.14 | 55.33±0.24 | 68.92±0.03 | |
OuluNIR | PCA | 69.12±0.44 | 72.20±0.23 | 71.86±0.09 | 76.43±0.04 | 72.91±0.27 | 78.04±0.73 |
LPP | 72.30±0.92 | 75.44±0.08 | 62.70±0.50 | 78.63±0.05 | 71.18±0.63 | 83.04±0.84 | |
LDA | 34.12±0.81 | 49.63±0.92 | 43.10±0.60 | 68.81±0.02 | 71.89±0.36 | 79.39±0.32 | |
OuluVIS | PCA | 87.33±0.95 | 86.99±0.11 | 86.49±0.14 | 80.78±0.73 | 87.37±0.39 | 92.43±0.75 |
LPP | 86.39±0.87 | 84.33±0.04 | 57.26±0.42 | 86.07±0.02 | 88.01±0.79 | 90.47±0.26 | |
LDA | 71.18±0.09 | 80.71±0.48 | 49.60±0.19 | 87.77±0.01 | 88.14±0.52 | 92.87±0.46 |
Datasets | Subspace methods | DASA | GFK | RDALR | MEDA | MMTL | IMTL |
---|---|---|---|---|---|---|---|
CMUHR | PCA | 18.81±0.55 | 23.14±0.31 | 17.01±0.19 | 48.64±0.31 | 39.58±0.67 | 56.51±0.33 |
LPP | 27.30±0.63 | 24.60±0.76 | 18.71±0.06 | 51.30±0.10 | 53.89±0.44 | 60.16±0.47 | |
LDA | 19.01±0.64 | 21.73±0.39 | 20.39±0.19 | 59.40±0.05 | 49.82±0.41 | 57.32±0.50 | |
CMULR | PCA | 9.69±0.77 | 11.30±0.73 | 10.32±0.83 | 31.36±0.09 | 17.08±0.18 | 37.53±0.25 |
LPP | 11.21±0.50 | 12.04±0.03 | 9.39±0.74 | 29.41±0.41 | 33.27±0.40 | 35.31±0.45 | |
LDA | 16.55±0.09 | 13.81±0.16 | 16.38±1.02 | 25.84±0.04 | 35.40±0.32 | 38.36±0.80 | |
YaleBHR | PCA | 13.77±0.04 | 12.61±0.55 | 13.38±0.55 | 35.63±0.06 | 27.14±0.42 | 41.58±0.55 |
LPP | 17.95±0.15 | 18.54±0.80 | 11.65±0.62 | 35.51±0.19 | 36.43±0.40 | 42.73±0.25 | |
LDA | 11.66±0.52 | 15.03±0.61 | 15.25±0.24 | 32.91±0.07 | 34.26±0.32 | 39.35±0.73 | |
YaleBLR | PCA | 12.52±0.47 | 10.94±0.18 | 11.98±0.21 | 22.92±0.12 | 14.22±0.22 | 28.54±0.23 |
LPP | 11.54±0.80 | 11.54±0.52 | 12.94±0.06 | 28.24±0.58 | 24.67±0.36 | 30.69±0.99 | |
LDA | 10.81±0.30 | 12.15±0.81 | 17.82±0.97 | 23.87±0.28 | 25.88±0.05 | 29.95±0.41 |
Table 2 Accuracy of algorithms on CMU-PIE and Yale B datasets
Datasets | Subspace methods | DASA | GFK | RDALR | MEDA | MMTL | IMTL |
---|---|---|---|---|---|---|---|
CMUHR | PCA | 18.81±0.55 | 23.14±0.31 | 17.01±0.19 | 48.64±0.31 | 39.58±0.67 | 56.51±0.33 |
LPP | 27.30±0.63 | 24.60±0.76 | 18.71±0.06 | 51.30±0.10 | 53.89±0.44 | 60.16±0.47 | |
LDA | 19.01±0.64 | 21.73±0.39 | 20.39±0.19 | 59.40±0.05 | 49.82±0.41 | 57.32±0.50 | |
CMULR | PCA | 9.69±0.77 | 11.30±0.73 | 10.32±0.83 | 31.36±0.09 | 17.08±0.18 | 37.53±0.25 |
LPP | 11.21±0.50 | 12.04±0.03 | 9.39±0.74 | 29.41±0.41 | 33.27±0.40 | 35.31±0.45 | |
LDA | 16.55±0.09 | 13.81±0.16 | 16.38±1.02 | 25.84±0.04 | 35.40±0.32 | 38.36±0.80 | |
YaleBHR | PCA | 13.77±0.04 | 12.61±0.55 | 13.38±0.55 | 35.63±0.06 | 27.14±0.42 | 41.58±0.55 |
LPP | 17.95±0.15 | 18.54±0.80 | 11.65±0.62 | 35.51±0.19 | 36.43±0.40 | 42.73±0.25 | |
LDA | 11.66±0.52 | 15.03±0.61 | 15.25±0.24 | 32.91±0.07 | 34.26±0.32 | 39.35±0.73 | |
YaleBLR | PCA | 12.52±0.47 | 10.94±0.18 | 11.98±0.21 | 22.92±0.12 | 14.22±0.22 | 28.54±0.23 |
LPP | 11.54±0.80 | 11.54±0.52 | 12.94±0.06 | 28.24±0.58 | 24.67±0.36 | 30.69±0.99 | |
LDA | 10.81±0.30 | 12.15±0.81 | 17.82±0.97 | 23.87±0.28 | 25.88±0.05 | 29.95±0.41 |
[1] |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
DOI URL |
[2] | ZHOU Z H. Learning with unlabeled data and its applic-ation to image retrieval[C]// Proceedings of the 2006 Pacific Rim International Conference on Artificial Intelligence. Berlin, Heidelberg: Springer, 2006: 5-10. |
[3] |
CHEPLYGINA V, DE BRUIJNE M, PLUIM J P W. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis[J]. Medical Image Analysis, 2019, 54: 280-296.
DOI PMID |
[4] | DAI W, XUE G R, QIANG Y, et al. Co-clustering based classification for out-of-domain documents[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, Aug 12-15, 2007. New York: ACM, 2007: 210-219. |
[5] | 程旸, 蒋亦樟, 钱鹏江, 等. 知识迁移的极大熵聚类算法及其在纹理图像分割中的应用[J]. 智能系统学报, 2017, 12(2): 179-187. |
CHENG Y, JIANG Y Z, QIAN P J, et al. A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation[J]. CAAI Transactions on Intelligent Systems, 2017, 12(2): 179-187. | |
[6] |
ZHUANG F, LUO P, XIONG H, et al. Exploiting asso-ciations between word clusters and document classes for cross-domain text categorization[J]. Statistical Analysis and Data Mining, 2011, 4(1): 100-114.
DOI URL |
[7] | BLITZER J, MCDONALD R T, PEREIRA F. Domain adaptation with structural correspondence learning[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, Sydney, Jul 22-23, 2006. Stroudsburg: ACL, 2006: 120-128. |
[8] | PAN S J, KWOK J T, YANG Q. Transfer learning via dimensionality reduction[C]// Proceedings of the 23rd AAAI Conference on Artificial Intelligence, Chicago, Jul 13-17, 2008. Menlo Park: AAAI, 2008: 677-682. |
[9] |
SI S, TAO D, GENG B. Bregman divergence-based regul-arization for transfer subspace learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(7): 929-942.
DOI URL |
[10] |
毛发贵, 李碧雯, 沈备军. 基于实例迁移的跨项目软件缺陷预测[J]. 计算机科学与探索, 2016, 10(1): 43-55.
DOI URL |
MAO F G, LI B W, SHEN B J. Cross-project software defect prediction based on instance transfer[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(1): 43-55.
DOI URL |
|
[11] | DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]// Proceedings of the 24th International Conference on Machine Learning, Corvallis, Jun 20-24, 2007. New York: ACM, 2007: 193-200. |
[12] |
LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 171-184.
DOI URL |
[13] | RAAB C, SCHLEIF F M. Domain adaptation via low-rank basis approximation[J]. arXiv:1907.01343, 2019. |
[14] |
SHAO M, KIT D, FU Y. Generalized transfer subspace learning through low-rank constraint[J]. International Journal of Computer Vision, 2014, 109(1/2): 74-93.
DOI URL |
[15] | LIU G C, YAN S C. Latent low-rank representation for subspace segmentation and feature extraction[C]// Procee-dings of the 2011 IEEE International Conference on Comp-uter Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 1615-1622. |
[16] | DING Z M, SHAO M, FU Y. Latent low-rank transfer subspace learning for missing modality recognition[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1192-1198. |
[17] | THOPALLI K, ANIRUDH R, THIAGARAJAN J J, et al. Multiple subspace alignment improves domain adaptation[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, May 12-17, 2019. Piscataway: IEEE, 2019: 3552-3556. |
[18] | BELKIN M, NIYOGI P, SINDHWANI V. Manifold regula-rization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7: 2399-2434. |
[19] |
LONG M, WANG J, DING G, et al. Adaptation regulariz-ation: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(5): 1076-1089.
DOI URL |
[20] | YU C N J, JOACHIMS T. Learning structural SVMS with latent variables[C]// Proceedings of the 26th Annual Intern-ational Conference on Machine Learning, Montreal, Jun 14-18, 2009. New York: ACM, 2009: 1169-1176. |
[21] |
LI J, NAJMI A, GRAY R M. Image classification by a two-dimensional hidden Markov model[J]. IEEE Transactions on Signal Processing, 2000, 48(2): 517-533.
DOI URL |
[22] |
DING Z, SHAO M, FU Y. Missing modality transfer learning via latent low-rank constraint[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4322-4334.
DOI PMID |
[23] | LIU G C, LIN Z C, YU Y. Robust subspace segmentation by low-rank representation[C]// Proceedings of the 27th Int-ernational Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omnipress, 2010: 663-670. |
[24] |
RAZZAGHI P, RAZZAGHI P, ABBASI K. Transfer sub-space learning via low-rank and discriminative reconstruction matrix[J]. Knowledge-Based Systems, 2019, 163: 174-185.
DOI URL |
[25] |
DING Z, SHAO M, FU Y. Incomplete multisource transfer learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 29(2): 310-323.
DOI URL |
[26] |
杨昌健, 邓赵红, 蒋亦樟, 等. 基于迁移学习的癫痫EEG信号自适应识别[J]. 计算机科学与探索, 2014, 8(3): 329-337.
DOI URL |
YANG C J, DENG Z H, JIANG Y Z, et al. Adaptive recog-nition of epileptic EEG signals based on transfer learning[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(3): 329-337. | |
[27] | PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transa-ctions on Neural Networks, 2010, 22(2): 199-210. |
[28] |
DING Z, FU Y. Robust multiview data analysis through collective low-rank subspace[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5): 1986-1997.
DOI URL |
[29] |
CAI J F, CANDÈS E J, SHEN Z. A singular value thresh-olding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
DOI URL |
[30] | SHAO M, FU Y. Hierarchical hyperlingual-words for multi-modality face classification[C]// Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, Apr 22-26, 2013. Washington: IEEE Computer Society, 2013: 1-6. |
[31] | JHUO I H, LIU D, LEE D T, et al. Robust visual domain adaptation with low-rank reconstruction[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2168-2175. |
[32] | GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2066-2073. |
[33] | FERNANDO B, HABRARD A, SEBBAN M, et al. Unsup-ervised visual domain adaptation using subspace alignment[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2960-2967. |
[34] | WANG J D, FENG W J, CHEN Y Q, et al. Visual domain adaptation with manifold embedded distribution alignment[C]// Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 402-410. |
[35] |
TAHMORESNEZHAD J, HASHEMI S. Visual domain adaptation via transfer feature learning[J]. Knowledge and Information Systems, 2017, 50(2): 585-605.
DOI URL |
[36] | BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[C]// LNCS 1064: Proceedings of the 4th European Conference on Computer Vision, Cambridge, Apr 15-18, 1996. Berlin, Heidelberg: Springer, 1966: 43-58. |
[37] | HE X F, NIYOGI P. Locality preserving projections[C]// Advances in Neural Information Processing Systems 16, Vancouver, Dec 8-13, 2003. Cambridge: MIT Press, 2003: 153-160. |
[1] | LIU Chunlei, CHEN Tian‘en, WANG Cong, JIANG Shuwen, CHEN Dong. Survey of Few-Shot Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73. |
[2] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[3] | CHANG Tian, ZHANG Zongzhang, YU Yang. Stochastic Ensemble Policy Transfer [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2531-2536. |
[4] | LI Meng, LI Yanling, LIN Min. Review of Transfer Learning for Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 206-218. |
[5] | ZHAO Pengfei, LI Yanling, LIN Min. Research Progress on Intent Detection Oriented to Transfer Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1261-1274. |
[6] | REN Hao, LIU Baisong, SUN Jinyang. Advances and Perspectives on Knowledge Transfer Based Cross-Domain Recom-mendation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1813-1827. |
[7] | YAO Susu, WANG Baoliang, HOU Yonghong. Ensemble Transfer Learning Algorithm for Absolute Imbalanced Data Classification [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1145-1153. |
[8] | WEI Caina, QIAN Pengjiang, XI Chen. Transfer Spectral Clustering Based on Inter-Domain F-Norm Regularization [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 472-483. |
[9] | CHENG Yang, WANG Shitong, HANG Wenlong. Discriminative Knowledge-Leverage-Based Transfer Classification Learning [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(3): 427-437. |
[10] | XIE Lixiao, DENG Zhaohong, SHI Yingzhong, WANG Shitong. Transfer Radial Basis Function Neural Network for Adaptive Recognition of Epileptic EEG Signals [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(12): 1729-1736. |
[11] | MAO Fagui, LI Biwen, SHEN Beijun. Cross-Project Software Defect Prediction Based on Instance Transfer [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(1): 43-55. |
[12] | LI Xiang, ZHU Quanyin. Collaborative Filtering Recommendation with Co-clustering and Rating-Matrix Sharing [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(6): 751-759. |
[13] | YANG Changjian, DENG Zhaohong, JIANG Yizhang, WANG Shitong. Adaptive Recognition of Epileptic EEG Signals Based on Transfer Learning [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(3): 329-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/