Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (3): 649-660.DOI: 10.3778/j.issn.1673-9418.2010029
• Graphics and Image • Previous Articles Next Articles
CHENG Shilong, XIE Linbo+(), PENG Li
Received:
2020-10-12
Revised:
2020-11-30
Online:
2022-03-01
Published:
2020-12-08
About author:
CHENG Shilong, born in 1995, M.S. candidate. His research interests include visual object track-ing and deep learning.Supported by:
通讯作者:
+ E-mail: xie_linbo@jiangnan.edu.cn作者简介:
程世龙(1995—),男,安徽宿州人,硕士研究生,主要研究方向为目标跟踪、深度学习。基金资助:
CLC Number:
CHENG Shilong, XIE Linbo, PENG Li. Gradient-Guided Object Tracking Algorithm with Channel Selection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 649-660.
程世龙, 谢林柏, 彭力. 梯度导向的通道选择目标跟踪算法[J]. 计算机科学与探索, 2022, 16(3): 649-660.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010029
算法 | OTB50 | OTB100 | ||
---|---|---|---|---|
精度 | 成功率 | 精度 | 成功率 | |
SRDCF[ | 0.731 | 0.539 | 0.789 | 0.598 |
DeepSRDCF[ | 0.772 | 0.560 | 0.851 | 0.635 |
Staple[ | 0.683 | 0.506 | 0.783 | 0.578 |
fDSST[ | 0.616 | 0.460 | 0.686 | 0.517 |
CFNet[ | 0.724 | 0.535 | 0.778 | 0.587 |
SiamFC[ | 0.693 | 0.519 | 0.772 | 0.587 |
SiamRPN[ | 0.806 | 0.583 | 0.847 | 0.629 |
DaSiamRPN[ | 0.829 | 0.604 | 0.880 | 0.658 |
SiamDWfc[ | 0.775 | 0.569 | 0.828 | 0.627 |
GradNet[ | 0.825 | 0.597 | 0.861 | 0.639 |
Proposed | 0.835 | 0.619 | 0.865 | 0.659 |
Table 1 AUC of algorithms on OTB dataset
算法 | OTB50 | OTB100 | ||
---|---|---|---|---|
精度 | 成功率 | 精度 | 成功率 | |
SRDCF[ | 0.731 | 0.539 | 0.789 | 0.598 |
DeepSRDCF[ | 0.772 | 0.560 | 0.851 | 0.635 |
Staple[ | 0.683 | 0.506 | 0.783 | 0.578 |
fDSST[ | 0.616 | 0.460 | 0.686 | 0.517 |
CFNet[ | 0.724 | 0.535 | 0.778 | 0.587 |
SiamFC[ | 0.693 | 0.519 | 0.772 | 0.587 |
SiamRPN[ | 0.806 | 0.583 | 0.847 | 0.629 |
DaSiamRPN[ | 0.829 | 0.604 | 0.880 | 0.658 |
SiamDWfc[ | 0.775 | 0.569 | 0.828 | 0.627 |
GradNet[ | 0.825 | 0.597 | 0.861 | 0.639 |
Proposed | 0.835 | 0.619 | 0.865 | 0.659 |
算法 | A | EAO | R |
---|---|---|---|
UCT [ | 0.482 | 0.206 | 0.490 |
UNet-SiamFC[ | 0.490 | 0.214 | 0.580 |
SiamRPN[ | 0.490 | 0.244 | 0.460 |
ECO_HC[ | 0.494 | 0.177 | 0.571 |
SA-Siam[ | 0.500 | 0.236 | 0.459 |
SimpleRT-MDNet [ | 0.508 | 0.218 | 0.464 |
Proposed | 0.509 | 0.245 | 0.460 |
Table 2 Performance comparison of tracking algorithms on VOT2018 dataset
算法 | A | EAO | R |
---|---|---|---|
UCT [ | 0.482 | 0.206 | 0.490 |
UNet-SiamFC[ | 0.490 | 0.214 | 0.580 |
SiamRPN[ | 0.490 | 0.244 | 0.460 |
ECO_HC[ | 0.494 | 0.177 | 0.571 |
SA-Siam[ | 0.500 | 0.236 | 0.459 |
SimpleRT-MDNet [ | 0.508 | 0.218 | 0.464 |
Proposed | 0.509 | 0.245 | 0.460 |
序列 | 帧数 | 主要挑战 |
---|---|---|
Matrix | 100 | 遮挡、光照变化、快速运动、背景混乱 |
Bird1 | 408 | 遮挡、形变、快速运动、超出视野 |
Box | 1 161 | 遮挡、旋转、尺度变化、运动模糊 |
MotorRolling | 164 | 旋转、运动模糊、快速运动、背景混乱 |
Soccer | 392 | 遮挡、运动模糊、快速运动、背景混乱 |
Table 3 Some video properties on OTB100
序列 | 帧数 | 主要挑战 |
---|---|---|
Matrix | 100 | 遮挡、光照变化、快速运动、背景混乱 |
Bird1 | 408 | 遮挡、形变、快速运动、超出视野 |
Box | 1 161 | 遮挡、旋转、尺度变化、运动模糊 |
MotorRolling | 164 | 旋转、运动模糊、快速运动、背景混乱 |
Soccer | 392 | 遮挡、运动模糊、快速运动、背景混乱 |
模块 | 精度 | 成功率 |
---|---|---|
Initial | 0.835 | 0.619 |
S-P | 0.860 | 0.648 |
S-P+M-C | 0.865 | 0.659 |
Table 4 Tracking accuracy and success rate of each module on OTB100 dataset
模块 | 精度 | 成功率 |
---|---|---|
Initial | 0.835 | 0.619 |
S-P | 0.860 | 0.648 |
S-P+M-C | 0.865 | 0.659 |
[1] | 卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76. |
LU H C, LI P X, WANG D. Visual object tracking: a survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76. | |
[2] | 尹宽, 李均利, 李丽, 等. 复杂情况下自适应特征更新目标跟踪算法[J]. 光学学报, 2019, 39(11): 227-242. |
YIN K, LI J L, LI L, et al. Adaptive feature update object-tracking algorithm in complex situations[J]. Acta Optica Sinica, 2019, 39(11): 227-242. | |
[3] | MA C, HUANG J B, YANG X K, et al. Hierarchical convolu-tional features for visual tracking[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 11-18, 2015. Washington: IEEE Computer Society, 2015: 3074-3082. |
[4] | ZHU Z, WU W, ZOU W, et al. End to end flow correlation tracking with spatial-temporal attention[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 548-557. |
[5] | 刘芳, 黄光伟, 路丽霞, 等. 自适应模板更新的鲁棒目标跟踪算法[J]. 计算机科学与探索, 2019, 13(1): 83-96. |
LIU F, HUANG G W, LU L X, et al. Robust target tracking algorithm for adaptive template updating[J]. Journal of Fron-tiers of Computer Science and Technology, 2019, 13(1): 83-96. | |
[6] | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]// LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Cham: Springer, 2016: 850-865. |
[7] | LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 8971-8980. |
[8] | REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99. |
[9] | 仇祝令, 查宇飞, 朱鹏, 等. 基于孪生神经网络在线判别特征的视觉跟踪算法[J]. 光学学报, 2019, 39(9): 253-261. |
QIU Z L, ZHA Y F, ZHU P, et al. Visual tracking algorithm based on online feature discrimination with siamese net-work[J]. Acta Optica Sinica, 2019, 39(9): 253-261. | |
[10] | PU S, SONG Y B, MA C, et al. Deep attentive tracking via reciprocative learning[C]// Proceedings of the Annual Con-ference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 1935-1945. |
[11] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient based localization[C]// Proceedings of the 2017 IEEE Inter-national Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 618-626. |
[12] | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative location[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2921-2929. |
[13] | 贾永超, 何小卫, 郑忠龙. 融合重检测机制的卷积回归网络目标跟踪算法[J]. 计算机应用, 2019, 39(8): 2247-2251. |
JIA Y C, HE X W, ZHENG Z L. Object tracking algorithm combining re-detection mechanism and convolutional reg-ression network[J]. Journal of Computer Applications, 2019, 39(8): 2247-2251. | |
[14] |
CHEN K, TAO W B. Convolutional regression for visual tracking[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3611-3620.
DOI URL |
[15] |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
DOI URL |
[16] | SIMONYAN K, ZISSERMAN A. Very deep convolutional net-works for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[17] |
WU Y, LIM J, YANG M. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
DOI URL |
[18] | DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4310-4318. |
[19] | DANELLJAN M, HÄGER G, KHAN F S, et al. Convolu-tional features for correlation filter based visual tracking[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops, Santiago, Dec 11-18, 2015. Washington: IEEE Computer Society, 2015: 621-629. |
[20] | BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]// Proceedings of the 2016 IEEE Conference on Computer Vi-sion and Pattern Recognition, Las Vegas, June 27-30, 2016. Washington: IEEE Computer Society, 2016: 1401-1409. |
[21] |
DANELLJAN M, HAGER G, KHAN F S, et al. Discrimin-ative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575.
DOI URL |
[22] | VALMADRE J, BERTINETTO L, HENRIQUES J F, et al. End to end representation learning for correlation filter based tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5000-5008. |
[23] | ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese net-works for visual object tracking[C]// LNCS 11213: Proceed-ings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 103-119. |
[24] | ZHANG Z P, PENG H W. Deeper and wider siamese net-works for real-time visual tracking[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4591-4600. |
[25] | LI P X, CHEN B Y, OUYANG W L, et al. GradNet: gradient guided network for visual object tracking[C]// Proceedings of the 2019 IEEE/CVF International Conference on Com-puter Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6162-6170. |
[26] | KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]// LNCS 11129: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-53. |
[27] | ZHU Z, HUANG G, ZOU W, et al. UCT: learning unified convolutional networks for real-time visual tracking[C]// Pro-ceedings of the 2017 IEEE International Conference on Com-puter Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1973-1982. |
[28] | ZHANG L C, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for siamese trackers[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4010-4018. |
[29] | DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6931-6939. |
[30] | HE A F, LUO C, TIAN X M, et al. A twofold siamese net-work for real-time object tracking[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4834-4843. |
[31] | GAO J, HU W M, LU Y, et al. Recursive least squares estimator-aided online learning for visual tracking[C]// Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 7386-7395. |
[1] | YANG Zheng, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. Target Tracking System Constructed by ELM-AE and Transfer Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1633-1648. |
[2] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[3] | ZHAO Yunji, FAN Cunliang, ZHANG Xinliang. Object Tracking Algorithm with Fusion of Multi-feature and Channel Awareness [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1417-1428. |
[4] | YANG Jinlong, TANG Yu, ZHANG Guangnan. Visual Multi-Object Tracking Using Convolution Feature and Multi-Bernoulli Filter [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1945-1957. |
[5] | HOU Yue’en1+, LI Weiguang. Structured Sparse Representation Classification Object Tracking Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(7): 1035-1043. |
[6] | ZHANG Ji1,2, WANG Hongyuan1,2+. Fast Sparse Coding Algorithm for Video Object Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(8): 760-768. |
[7] | CHEN Long, YIN Biao. Violent Abnormal Event Detection for Self-Service Banking [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(4): 377-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/