Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1169-1181.DOI: 10.3778/j.issn.1673-9418.2108067
• Theory and Algorithm • Previous Articles Next Articles
Received:
2021-07-08
Revised:
2021-09-03
Online:
2022-05-01
Published:
2022-05-19
About author:
LIU Liqun, born in 1982, M.S., associate profe-ssor, M.S. supervisor. Her research interests in-clude intelligent computing, image processing, etc.Supported by:
通讯作者:
+ E-mail: llqhjy@126.com作者简介:
刘立群(1982—),女,甘肃天水人,硕士,副教授,硕士生导师,主要研究方向为智能计算、图像处理等。基金资助:
CLC Number:
LIU Liqun, GU Renyuan. Shuffled Frog Leaping Algorithm Driven by Nuclear Center and Its Application[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1169-1181.
刘立群, 顾任远. 核中心驱动混合蛙跳算法及其应用[J]. 计算机科学与探索, 2022, 16(5): 1169-1181.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2108067
测试函数 | 公式 | 维数D | 范围 | | 峰值 |
---|---|---|---|---|---|
Sphere[ | | 30 | | 0 | 单峰 |
Griewank[ | | 30 | | 0 | 多峰 |
Bent Cigar[ | | 30 | | 0 | 单峰 |
Sumpower[ | | 30 | | 0 | 单峰 |
Zakharov[ | | 30 | | 0 | 单峰 |
Discus[ | | 30 | | 0 | 单峰 |
Weierstrass[ | | 30 | | 0 | 多峰 |
Katsuura[ | | 30 | | 0 | 多峰 |
HappyCat[ | | 30 | | | 多峰 |
HGBat[ | | 30 | | | 多峰 |
Schwefel222[ | | 30 | | 0 | 单峰 |
aa[ | | 30 | | 0 | 单峰 |
Schwefel221[ | | 30 | | 0 | 单峰 |
Step[ | | 30 | | 0 | 单峰 |
dd[ | | 30 | | 0 | 多峰 |
ee[ | | 30 | | 0 | 多峰 |
Rosenbrock[ | | 30 | | 0 | 多峰 |
Schwefel2_26[ | | 30 | | 0 | 多峰 |
cf01[ | | 30 | | | 复合 |
cf02[ | | 30 | | | 复合 |
Table 1 Benchmark functions
测试函数 | 公式 | 维数D | 范围 | | 峰值 |
---|---|---|---|---|---|
Sphere[ | | 30 | | 0 | 单峰 |
Griewank[ | | 30 | | 0 | 多峰 |
Bent Cigar[ | | 30 | | 0 | 单峰 |
Sumpower[ | | 30 | | 0 | 单峰 |
Zakharov[ | | 30 | | 0 | 单峰 |
Discus[ | | 30 | | 0 | 单峰 |
Weierstrass[ | | 30 | | 0 | 多峰 |
Katsuura[ | | 30 | | 0 | 多峰 |
HappyCat[ | | 30 | | | 多峰 |
HGBat[ | | 30 | | | 多峰 |
Schwefel222[ | | 30 | | 0 | 单峰 |
aa[ | | 30 | | 0 | 单峰 |
Schwefel221[ | | 30 | | 0 | 单峰 |
Step[ | | 30 | | 0 | 单峰 |
dd[ | | 30 | | 0 | 多峰 |
ee[ | | 30 | | 0 | 多峰 |
Rosenbrock[ | | 30 | | 0 | 多峰 |
Schwefel2_26[ | | 30 | | 0 | 多峰 |
cf01[ | | 30 | | | 复合 |
cf02[ | | 30 | | | 复合 |
函数 | 算法 | 平均最优值 | 标准差 | 最大值 | 最小值 | 运行时间/s | 函数 | 算法 | 平均最优值 | 标准差 | 最大值 | 最小值 | 运行时间/s |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NCSFLA | 1.34E+03 | 5.34E+03 | 4.68E+04 | 6.25E-05 | 1.51E-01 | | NCSFLA | 4.91E+00 | 1.47E+01 | 1.18E+02 | 8.66E-05 | 1.98E-01 |
MSFLA | 1.34E+04 | 1.65E+04 | 4.68E+04 | 4.53E+02 | 1.85E-01 | MSFLA | 1.21E+01 | 1.55E+01 | 1.18E+02 | 1.98E+00 | 2.20E-01 | ||
GSF2LA | 6.37E+03 | 1.42E+04 | 4.68E+04 | 1.64E+01 | 1.76E-01 | GSF2LA | 4.57E+00 | 1.49E+01 | 1.18E+02 | 8.48E-01 | 1.78E-01 | ||
SFLA | 6.37E+03 | 1.41E+04 | 4.68E+04 | 4.24E+01 | 1.70E-01 | SFLA | 5.29E+00 | 1.29E+01 | 1.18E+02 | 1.56E+00 | 1.78E-01 | ||
HSA | 4.64E+04 | 3.01E+02 | 4.68E+04 | 4.54E+04 | 1.09E-01 | HSA | 1.07E+02 | 4.51E+00 | 1.18E+02 | 1.05E+02 | 1.17E-01 | ||
ABCA | 1.66E+04 | 2.01E+04 | 7.31E+04 | 1.45E+01 | 1.84E+00 | ABCA | 3.53E+08 | 3.92E+09 | 5.45E+10 | 6.03E-01 | 1.62E+00 | ||
| NCSFLA | 1.26E+01 | 4.82E+01 | 4.22E+02 | 2.97E-02 | 4.30E-01 | | NCSFLA | 2.19E+03 | 8.82E+03 | 8.35E+04 | 6.18E+00 | 3.05E-01 |
MSFLA | 4.14E+02 | 1.92E+01 | 4.22E+02 | 3.45E+02 | 2.71E-01 | MSFLA | 6.00E+04 | 1.95E+04 | 8.35E+04 | 3.33E+04 | 2.41E-01 | ||
GSF2LA | 3.20E+02 | 1.15E+02 | 4.22E+02 | 9.77E+01 | 2.47E-01 | GSF2LA | 2.79E+04 | 3.49E+04 | 8.35E+04 | 2.29E+02 | 2.15E-01 | ||
SFLA | 3.21E+02 | 1.15E+02 | 4.22E+02 | 9.81E+01 | 2.50E-01 | SFLA | 2.62E+04 | 3.45E+04 | 8.35E+04 | 2.63E+02 | 2.18E-01 | ||
HSA | 4.19E+02 | 1.98E+00 | 4.22E+02 | 4.18E+02 | 1.89E-01 | HSA | 8.35E+04 | 0.00E+00 | 8.35E+04 | 8.35E+04 | 7.60E-02 | ||
ABCA | 1.45E+02 | 1.88E+02 | 5.87E+02 | 1.44E+00 | 2.20E+00 | ABCA | 3.62E+04 | 1.51E+04 | 9.13E+04 | 2.52E+04 | 1.87E+00 | ||
| NCSFLA | 1.30E+07 | 5.75E+07 | 4.59E+08 | 2.12E-01 | 2.97E-01 | | NCSFLA | 5.38E-01 | 5.92E+00 | 8.20E+01 | 0.00E+00 | 2.28E-01 |
MSFLA | 1.83E+07 | 6.47E+07 | 4.59E+08 | 1.86E+05 | 2.76E-01 | MSFLA | 5.89E+01 | 6.94E+00 | 8.20E+01 | 5.40E+01 | 2.58E-01 | ||
GSF2LA | 8.61E+06 | 5.46E+07 | 4.59E+08 | 4.02E+04 | 2.10E-01 | GSF2LA | 8.07E+01 | 3.64E-01 | 8.20E+01 | 8.05E+01 | 1.85E-01 | ||
SFLA | 7.45E+06 | 4.87E+07 | 4.59E+08 | 1.20E+05 | 1.98E-01 | SFLA | 7.81E+01 | 3.70E+00 | 8.20E+01 | 7.20E+01 | 1.84E-01 | ||
HSA | 4.35E+08 | 1.53E+07 | 4.59E+08 | 4.25E+08 | 1.89E-01 | HSA | 8.20E+01 | 0.00E+00 | 8.20E+01 | 8.20E+01 | 1.50E-01 | ||
ABCA | 1.30E+08 | 2.10E+08 | 8.07E+08 | 4.88E+04 | 1.96E+00 | ABCA | 7.42E+01 | 9.04E+00 | 9.33E+01 | 6.07E+01 | 1.95E+00 | ||
| NCSFLA | 4.58E+43 | 6.45E+44 | 9.15E+45 | 5.20E+01 | 4.35E-01 | | NCSFLA | 1.28E+03 | 5.29E+03 | 4.67E+04 | 6.79E-06 | 2.02E-01 |
MSFLA | 1.04E+45 | 2.87E+45 | 9.15E+45 | 1.18E+18 | 2.87E-01 | MSFLA | 1.37E+04 | 1.63E+04 | 4.67E+04 | 6.04E+02 | 2.07E-01 | ||
GSF2LA | 9.69E+44 | 2.80E+45 | 9.15E+45 | 1.00E+00 | 2.24E-01 | GSF2LA | 6.36E+03 | 1.41E+04 | 4.67E+04 | 4.06E+01 | 1.75E-01 | ||
SFLA | 9.81E+44 | 2.81E+45 | 9.15E+45 | 1.30E+01 | 2.22E-01 | SFLA | 6.37E+03 | 1.41E+04 | 4.67E+04 | 3.73E+01 | 1.80E-01 | ||
HSA | 7.52E+45 | 1.49E+45 | 9.15E+45 | 6.16E+45 | 1.90E-01 | HSA | 4.67E+04 | 0.00E+00 | 4.67E+04 | 4.67E+04 | 1.46E-01 | ||
ABCA | 1.32E+48 | 4.79E+48 | 2.50E+49 | 4.98E+06 | 1.25E+00 | ABCA | 1.18E+04 | 1.94E+04 | 7.32E+04 | 9.36E-01 | 1.48E+00 | ||
| NCSFLA | 2.84E+04 | 3.99E+05 | 5.65E+06 | 4.16E-01 | 4.25E-01 | | NCSFLA | 5.07E+06 | 3.19E+07 | 3.19E+08 | -9.21E-01 | 5.57E-01 |
MSFLA | 1.72E+05 | 9.64E+05 | 5.65E+06 | 1.91E+02 | 4.11E-01 | MSFLA | 2.03E+07 | 7.02E+07 | 3.19E+08 | 2.31E-01 | 4.07E-01 | ||
GSF2LA | 2.16E+05 | 1.07E+06 | 5.65E+06 | 1.59E+01 | 3.30E-01 | GSF2LA | 1.31E+07 | 5.77E+07 | 3.19E+08 | -1.00E+00 | 2.47E-01 | ||
SFLA | 2.05E+05 | 1.02E+06 | 5.65E+06 | 1.10E+01 | 3.45E-01 | SFLA | 1.27E+07 | 5.68E+07 | 3.19E+08 | -9.92E-01 | 2.48E-01 | ||
HSA | 1.33E+06 | 2.40E+06 | 5.65E+06 | 5.80E+02 | 1.48E-01 | HSA | 3.19E+08 | 5.36E-07 | 3.19E+08 | 3.19E+08 | 1.97E-01 | ||
ABCA | 2.58E+07 | 1.89E+08 | 2.08E+09 | 2.79E+02 | 1.26E+00 | ABCA | 3.58E+07 | 7.76E+07 | 4.59E+08 | -9.07E-01 | 1.21E+00 | ||
| NCSFLA | 3.60E+01 | 1.33E+02 | 7.63E+02 | 4.61E-07 | 1.65E-01 | | NCSFLA | 1.23E+07 | 6.72E+07 | 6.09E+08 | 2.10E-05 | 6.63E-01 |
MSFLA | 9.07E+01 | 1.56E+02 | 7.63E+02 | 6.67E+00 | 1.76E-01 | MSFLA | 4.54E+07 | 1.44E+08 | 6.09E+08 | 2.19E+01 | 4.24E-01 | ||
GSF2LA | 1.85E+01 | 1.02E+02 | 7.63E+02 | 7.98E-01 | 1.67E-01 | GSF2LA | 2.82E+07 | 1.16E+08 | 6.09E+08 | 1.64E-01 | 2.69E-01 | ||
SFLA | 2.21E+01 | 1.08E+02 | 7.63E+02 | 1.43E+00 | 1.71E-01 | SFLA | 2.76E+07 | 1.15E+08 | 6.09E+08 | 2.39E-01 | 2.81E-01 | ||
HSA | 7.63E+02 | 2.16E-12 | 7.63E+02 | 7.63E+02 | 1.01E-01 | HSA | 6.09E+08 | 2.03E-06 | 6.09E+08 | 6.09E+08 | 1.55E-01 | ||
ABCA | 1.61E+04 | 5.40E+04 | 3.67E+05 | 1.21E+03 | 1.39E+00 | ABCA | 1.47E+08 | 2.63E+08 | 9.27E+08 | 3.90E-02 | 1.13E+00 | ||
| NCSFLA | 1.09E+01 | 1.10E+01 | 4.91E+01 | 3.99E+00 | 2.53E+01 | | NCSFLA | 2.18E+04 | 9.17E+04 | 8.17E+05 | 6.24E-01 | 8.17E-01 |
MSFLA | 2.32E+01 | 6.47E+00 | 4.91E+01 | 1.78E+01 | 3.54E+01 | MSFLA | 1.83E+04 | 8.60E+04 | 8.17E+05 | 1.36E+03 | 5.62E-01 | ||
GSF2LA | 8.67E+00 | 8.34E+00 | 4.91E+01 | 3.82E+00 | 1.36E+01 | GSF2LA | 1.75E+04 | 9.77E+04 | 8.17E+05 | 1.72E+03 | 2.94E-01 | ||
SFLA | 8.93E+00 | 8.17E+00 | 4.91E+01 | 2.99E+00 | 1.60E+01 | SFLA | 1.73E+04 | 8.45E+04 | 8.17E+05 | 3.80E+03 | 2.99E-01 | ||
HSA | 4.77E+01 | 1.40E+00 | 4.91E+01 | 4.55E+01 | 2.08E-01 | HSA | 8.17E+05 | 2.33E-10 | 8.17E+05 | 8.17E+05 | 1.56E-01 | ||
ABCA | 1.44E+01 | 1.28E+01 | 5.54E+01 | 2.61E+00 | 2.36E+00 | ABCA | 1.66E+05 | 3.60E+05 | 1.69E+06 | 1.72E+02 | 2.13E+00 | ||
| NCSFLA | 3.35E-01 | 2.47E-01 | 9.62E-01 | 9.74E-03 | 4.71E+01 | | NCSFLA | -2.69E+19 | 1.14E+19 | 9.46E+03 | -3.75E+19 | 1.58E+00 |
MSFLA | 5.32E-01 | 1.35E-01 | 9.62E-01 | 4.53E-01 | 6.72E+01 | MSFLA | 9.26E+03 | 3.58E+01 | 9.46E+03 | 9.25E+03 | 4.48E-01 | ||
GSF2LA | 4.82E-01 | 2.33E-01 | 9.62E-01 | 1.90E-01 | 3.40E+01 | GSF2LA | 9.38E+03 | 1.50E+02 | 9.46E+03 | 9.08E+03 | 4.48E-01 | ||
SFLA | 4.16E-01 | 1.71E-01 | 9.62E-01 | 2.42E-01 | 5.74E+01 | SFLA | 9.39E+03 | 2.02E+01 | 9.46E+03 | 9.38E+03 | 4.20E-01 | ||
HSA | 7.67E-01 | 1.59E-01 | 9.62E-01 | 6.37E-01 | 1.78E-01 | HSA | 9.25E+03 | 6.89E+01 | 9.46E+03 | 9.03E+03 | 1.57E-01 | ||
ABCA | 3.55E-01 | 1.22E+00 | 9.20E+00 | 6.02E-03 | 2.02E+00 | ABCA | 5.30E+03 | 2.25E+03 | 1.08E+04 | 2.36E+03 | 1.44E+00 | ||
| NCSFLA | 5.40E+01 | 8.83E+01 | 7.95E+02 | 2.15E+01 | 1.82E-01 | | NCSFLA | 1.30E+04 | 5.88E+03 | 7.64E+04 | 1.16E+04 | 2.32E+00 |
MSFLA | 7.72E+02 | 1.75E+01 | 7.95E+02 | 7.48E+02 | 1.92E-01 | MSFLA | 2.83E+04 | 1.73E+04 | 7.64E+04 | 1.29E+04 | 1.14E+00 | ||
GSF2LA | 5.65E+02 | 9.01E+01 | 7.95E+02 | 4.95E+02 | 1.80E-01 | GSF2LA | 3.43E+04 | 1.59E+04 | 7.64E+04 | 1.93E+04 | 1.79E+00 | ||
SFLA | 5.78E+02 | 8.68E+01 | 7.95E+02 | 5.07E+02 | 1.72E-01 | SFLA | 3.47E+04 | 1.35E+04 | 7.64E+04 | 1.75E+04 | 1.86E+00 | ||
HSA | 7.08E+02 | 5.50E+01 | 7.95E+02 | 6.73E+02 | 1.67E-01 | HSA | 6.58E+04 | 4.52E+03 | 7.64E+04 | 6.26E+04 | 1.54E-01 | ||
ABCA | 4.78E+02 | 2.75E+02 | 1.29E+03 | 2.28E+02 | 1.74E+00 | ABCA | 2.14E+04 | 1.53E+04 | 6.98E+04 | 1.19E+04 | 1.29E+00 | ||
| NCSFLA | 2.77E+03 | 5.60E+03 | 4.78E+04 | 9.31E+02 | 2.00E-01 | | NCSFLA | 1.24E+02 | 1.46E+01 | 2.45E+02 | 1.18E+02 | 1.25E+00 |
MSFLA | 4.69E+04 | 9.22E+02 | 4.78E+04 | 4.57E+04 | 1.91E-01 | MSFLA | 1.68E+02 | 4.36E+01 | 2.45E+02 | 1.29E+02 | 9.06E-01 | ||
GSF2LA | 3.50E+04 | 5.28E+03 | 4.78E+04 | 3.13E+04 | 1.76E-01 | GSF2LA | 1.80E+02 | 2.94E+01 | 2.45E+02 | 1.40E+02 | 1.15E+00 | ||
SFLA | 3.49E+04 | 5.33E+03 | 4.78E+04 | 3.06E+04 | 1.77E-01 | SFLA | 1.68E+02 | 3.64E+01 | 2.45E+02 | 1.30E+02 | 9.91E-01 | ||
HSA | 4.78E+04 | 1.31E-10 | 4.78E+04 | 4.78E+04 | 1.57E-01 | HSA | 2.45E+02 | 4.83E-13 | 2.45E+02 | 2.45E+02 | 1.50E-01 | ||
ABCA | 2.27E+04 | 1.48E+04 | 7.93E+04 | 1.34E+04 | 1.51E+00 | ABCA | 1.57E+02 | 4.27E+01 | 2.90E+02 | 1.24E+02 | 3.01E+00 |
Table 2 Comparison of convergence precision and convergence speed
函数 | 算法 | 平均最优值 | 标准差 | 最大值 | 最小值 | 运行时间/s | 函数 | 算法 | 平均最优值 | 标准差 | 最大值 | 最小值 | 运行时间/s |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NCSFLA | 1.34E+03 | 5.34E+03 | 4.68E+04 | 6.25E-05 | 1.51E-01 | | NCSFLA | 4.91E+00 | 1.47E+01 | 1.18E+02 | 8.66E-05 | 1.98E-01 |
MSFLA | 1.34E+04 | 1.65E+04 | 4.68E+04 | 4.53E+02 | 1.85E-01 | MSFLA | 1.21E+01 | 1.55E+01 | 1.18E+02 | 1.98E+00 | 2.20E-01 | ||
GSF2LA | 6.37E+03 | 1.42E+04 | 4.68E+04 | 1.64E+01 | 1.76E-01 | GSF2LA | 4.57E+00 | 1.49E+01 | 1.18E+02 | 8.48E-01 | 1.78E-01 | ||
SFLA | 6.37E+03 | 1.41E+04 | 4.68E+04 | 4.24E+01 | 1.70E-01 | SFLA | 5.29E+00 | 1.29E+01 | 1.18E+02 | 1.56E+00 | 1.78E-01 | ||
HSA | 4.64E+04 | 3.01E+02 | 4.68E+04 | 4.54E+04 | 1.09E-01 | HSA | 1.07E+02 | 4.51E+00 | 1.18E+02 | 1.05E+02 | 1.17E-01 | ||
ABCA | 1.66E+04 | 2.01E+04 | 7.31E+04 | 1.45E+01 | 1.84E+00 | ABCA | 3.53E+08 | 3.92E+09 | 5.45E+10 | 6.03E-01 | 1.62E+00 | ||
| NCSFLA | 1.26E+01 | 4.82E+01 | 4.22E+02 | 2.97E-02 | 4.30E-01 | | NCSFLA | 2.19E+03 | 8.82E+03 | 8.35E+04 | 6.18E+00 | 3.05E-01 |
MSFLA | 4.14E+02 | 1.92E+01 | 4.22E+02 | 3.45E+02 | 2.71E-01 | MSFLA | 6.00E+04 | 1.95E+04 | 8.35E+04 | 3.33E+04 | 2.41E-01 | ||
GSF2LA | 3.20E+02 | 1.15E+02 | 4.22E+02 | 9.77E+01 | 2.47E-01 | GSF2LA | 2.79E+04 | 3.49E+04 | 8.35E+04 | 2.29E+02 | 2.15E-01 | ||
SFLA | 3.21E+02 | 1.15E+02 | 4.22E+02 | 9.81E+01 | 2.50E-01 | SFLA | 2.62E+04 | 3.45E+04 | 8.35E+04 | 2.63E+02 | 2.18E-01 | ||
HSA | 4.19E+02 | 1.98E+00 | 4.22E+02 | 4.18E+02 | 1.89E-01 | HSA | 8.35E+04 | 0.00E+00 | 8.35E+04 | 8.35E+04 | 7.60E-02 | ||
ABCA | 1.45E+02 | 1.88E+02 | 5.87E+02 | 1.44E+00 | 2.20E+00 | ABCA | 3.62E+04 | 1.51E+04 | 9.13E+04 | 2.52E+04 | 1.87E+00 | ||
| NCSFLA | 1.30E+07 | 5.75E+07 | 4.59E+08 | 2.12E-01 | 2.97E-01 | | NCSFLA | 5.38E-01 | 5.92E+00 | 8.20E+01 | 0.00E+00 | 2.28E-01 |
MSFLA | 1.83E+07 | 6.47E+07 | 4.59E+08 | 1.86E+05 | 2.76E-01 | MSFLA | 5.89E+01 | 6.94E+00 | 8.20E+01 | 5.40E+01 | 2.58E-01 | ||
GSF2LA | 8.61E+06 | 5.46E+07 | 4.59E+08 | 4.02E+04 | 2.10E-01 | GSF2LA | 8.07E+01 | 3.64E-01 | 8.20E+01 | 8.05E+01 | 1.85E-01 | ||
SFLA | 7.45E+06 | 4.87E+07 | 4.59E+08 | 1.20E+05 | 1.98E-01 | SFLA | 7.81E+01 | 3.70E+00 | 8.20E+01 | 7.20E+01 | 1.84E-01 | ||
HSA | 4.35E+08 | 1.53E+07 | 4.59E+08 | 4.25E+08 | 1.89E-01 | HSA | 8.20E+01 | 0.00E+00 | 8.20E+01 | 8.20E+01 | 1.50E-01 | ||
ABCA | 1.30E+08 | 2.10E+08 | 8.07E+08 | 4.88E+04 | 1.96E+00 | ABCA | 7.42E+01 | 9.04E+00 | 9.33E+01 | 6.07E+01 | 1.95E+00 | ||
| NCSFLA | 4.58E+43 | 6.45E+44 | 9.15E+45 | 5.20E+01 | 4.35E-01 | | NCSFLA | 1.28E+03 | 5.29E+03 | 4.67E+04 | 6.79E-06 | 2.02E-01 |
MSFLA | 1.04E+45 | 2.87E+45 | 9.15E+45 | 1.18E+18 | 2.87E-01 | MSFLA | 1.37E+04 | 1.63E+04 | 4.67E+04 | 6.04E+02 | 2.07E-01 | ||
GSF2LA | 9.69E+44 | 2.80E+45 | 9.15E+45 | 1.00E+00 | 2.24E-01 | GSF2LA | 6.36E+03 | 1.41E+04 | 4.67E+04 | 4.06E+01 | 1.75E-01 | ||
SFLA | 9.81E+44 | 2.81E+45 | 9.15E+45 | 1.30E+01 | 2.22E-01 | SFLA | 6.37E+03 | 1.41E+04 | 4.67E+04 | 3.73E+01 | 1.80E-01 | ||
HSA | 7.52E+45 | 1.49E+45 | 9.15E+45 | 6.16E+45 | 1.90E-01 | HSA | 4.67E+04 | 0.00E+00 | 4.67E+04 | 4.67E+04 | 1.46E-01 | ||
ABCA | 1.32E+48 | 4.79E+48 | 2.50E+49 | 4.98E+06 | 1.25E+00 | ABCA | 1.18E+04 | 1.94E+04 | 7.32E+04 | 9.36E-01 | 1.48E+00 | ||
| NCSFLA | 2.84E+04 | 3.99E+05 | 5.65E+06 | 4.16E-01 | 4.25E-01 | | NCSFLA | 5.07E+06 | 3.19E+07 | 3.19E+08 | -9.21E-01 | 5.57E-01 |
MSFLA | 1.72E+05 | 9.64E+05 | 5.65E+06 | 1.91E+02 | 4.11E-01 | MSFLA | 2.03E+07 | 7.02E+07 | 3.19E+08 | 2.31E-01 | 4.07E-01 | ||
GSF2LA | 2.16E+05 | 1.07E+06 | 5.65E+06 | 1.59E+01 | 3.30E-01 | GSF2LA | 1.31E+07 | 5.77E+07 | 3.19E+08 | -1.00E+00 | 2.47E-01 | ||
SFLA | 2.05E+05 | 1.02E+06 | 5.65E+06 | 1.10E+01 | 3.45E-01 | SFLA | 1.27E+07 | 5.68E+07 | 3.19E+08 | -9.92E-01 | 2.48E-01 | ||
HSA | 1.33E+06 | 2.40E+06 | 5.65E+06 | 5.80E+02 | 1.48E-01 | HSA | 3.19E+08 | 5.36E-07 | 3.19E+08 | 3.19E+08 | 1.97E-01 | ||
ABCA | 2.58E+07 | 1.89E+08 | 2.08E+09 | 2.79E+02 | 1.26E+00 | ABCA | 3.58E+07 | 7.76E+07 | 4.59E+08 | -9.07E-01 | 1.21E+00 | ||
| NCSFLA | 3.60E+01 | 1.33E+02 | 7.63E+02 | 4.61E-07 | 1.65E-01 | | NCSFLA | 1.23E+07 | 6.72E+07 | 6.09E+08 | 2.10E-05 | 6.63E-01 |
MSFLA | 9.07E+01 | 1.56E+02 | 7.63E+02 | 6.67E+00 | 1.76E-01 | MSFLA | 4.54E+07 | 1.44E+08 | 6.09E+08 | 2.19E+01 | 4.24E-01 | ||
GSF2LA | 1.85E+01 | 1.02E+02 | 7.63E+02 | 7.98E-01 | 1.67E-01 | GSF2LA | 2.82E+07 | 1.16E+08 | 6.09E+08 | 1.64E-01 | 2.69E-01 | ||
SFLA | 2.21E+01 | 1.08E+02 | 7.63E+02 | 1.43E+00 | 1.71E-01 | SFLA | 2.76E+07 | 1.15E+08 | 6.09E+08 | 2.39E-01 | 2.81E-01 | ||
HSA | 7.63E+02 | 2.16E-12 | 7.63E+02 | 7.63E+02 | 1.01E-01 | HSA | 6.09E+08 | 2.03E-06 | 6.09E+08 | 6.09E+08 | 1.55E-01 | ||
ABCA | 1.61E+04 | 5.40E+04 | 3.67E+05 | 1.21E+03 | 1.39E+00 | ABCA | 1.47E+08 | 2.63E+08 | 9.27E+08 | 3.90E-02 | 1.13E+00 | ||
| NCSFLA | 1.09E+01 | 1.10E+01 | 4.91E+01 | 3.99E+00 | 2.53E+01 | | NCSFLA | 2.18E+04 | 9.17E+04 | 8.17E+05 | 6.24E-01 | 8.17E-01 |
MSFLA | 2.32E+01 | 6.47E+00 | 4.91E+01 | 1.78E+01 | 3.54E+01 | MSFLA | 1.83E+04 | 8.60E+04 | 8.17E+05 | 1.36E+03 | 5.62E-01 | ||
GSF2LA | 8.67E+00 | 8.34E+00 | 4.91E+01 | 3.82E+00 | 1.36E+01 | GSF2LA | 1.75E+04 | 9.77E+04 | 8.17E+05 | 1.72E+03 | 2.94E-01 | ||
SFLA | 8.93E+00 | 8.17E+00 | 4.91E+01 | 2.99E+00 | 1.60E+01 | SFLA | 1.73E+04 | 8.45E+04 | 8.17E+05 | 3.80E+03 | 2.99E-01 | ||
HSA | 4.77E+01 | 1.40E+00 | 4.91E+01 | 4.55E+01 | 2.08E-01 | HSA | 8.17E+05 | 2.33E-10 | 8.17E+05 | 8.17E+05 | 1.56E-01 | ||
ABCA | 1.44E+01 | 1.28E+01 | 5.54E+01 | 2.61E+00 | 2.36E+00 | ABCA | 1.66E+05 | 3.60E+05 | 1.69E+06 | 1.72E+02 | 2.13E+00 | ||
| NCSFLA | 3.35E-01 | 2.47E-01 | 9.62E-01 | 9.74E-03 | 4.71E+01 | | NCSFLA | -2.69E+19 | 1.14E+19 | 9.46E+03 | -3.75E+19 | 1.58E+00 |
MSFLA | 5.32E-01 | 1.35E-01 | 9.62E-01 | 4.53E-01 | 6.72E+01 | MSFLA | 9.26E+03 | 3.58E+01 | 9.46E+03 | 9.25E+03 | 4.48E-01 | ||
GSF2LA | 4.82E-01 | 2.33E-01 | 9.62E-01 | 1.90E-01 | 3.40E+01 | GSF2LA | 9.38E+03 | 1.50E+02 | 9.46E+03 | 9.08E+03 | 4.48E-01 | ||
SFLA | 4.16E-01 | 1.71E-01 | 9.62E-01 | 2.42E-01 | 5.74E+01 | SFLA | 9.39E+03 | 2.02E+01 | 9.46E+03 | 9.38E+03 | 4.20E-01 | ||
HSA | 7.67E-01 | 1.59E-01 | 9.62E-01 | 6.37E-01 | 1.78E-01 | HSA | 9.25E+03 | 6.89E+01 | 9.46E+03 | 9.03E+03 | 1.57E-01 | ||
ABCA | 3.55E-01 | 1.22E+00 | 9.20E+00 | 6.02E-03 | 2.02E+00 | ABCA | 5.30E+03 | 2.25E+03 | 1.08E+04 | 2.36E+03 | 1.44E+00 | ||
| NCSFLA | 5.40E+01 | 8.83E+01 | 7.95E+02 | 2.15E+01 | 1.82E-01 | | NCSFLA | 1.30E+04 | 5.88E+03 | 7.64E+04 | 1.16E+04 | 2.32E+00 |
MSFLA | 7.72E+02 | 1.75E+01 | 7.95E+02 | 7.48E+02 | 1.92E-01 | MSFLA | 2.83E+04 | 1.73E+04 | 7.64E+04 | 1.29E+04 | 1.14E+00 | ||
GSF2LA | 5.65E+02 | 9.01E+01 | 7.95E+02 | 4.95E+02 | 1.80E-01 | GSF2LA | 3.43E+04 | 1.59E+04 | 7.64E+04 | 1.93E+04 | 1.79E+00 | ||
SFLA | 5.78E+02 | 8.68E+01 | 7.95E+02 | 5.07E+02 | 1.72E-01 | SFLA | 3.47E+04 | 1.35E+04 | 7.64E+04 | 1.75E+04 | 1.86E+00 | ||
HSA | 7.08E+02 | 5.50E+01 | 7.95E+02 | 6.73E+02 | 1.67E-01 | HSA | 6.58E+04 | 4.52E+03 | 7.64E+04 | 6.26E+04 | 1.54E-01 | ||
ABCA | 4.78E+02 | 2.75E+02 | 1.29E+03 | 2.28E+02 | 1.74E+00 | ABCA | 2.14E+04 | 1.53E+04 | 6.98E+04 | 1.19E+04 | 1.29E+00 | ||
| NCSFLA | 2.77E+03 | 5.60E+03 | 4.78E+04 | 9.31E+02 | 2.00E-01 | | NCSFLA | 1.24E+02 | 1.46E+01 | 2.45E+02 | 1.18E+02 | 1.25E+00 |
MSFLA | 4.69E+04 | 9.22E+02 | 4.78E+04 | 4.57E+04 | 1.91E-01 | MSFLA | 1.68E+02 | 4.36E+01 | 2.45E+02 | 1.29E+02 | 9.06E-01 | ||
GSF2LA | 3.50E+04 | 5.28E+03 | 4.78E+04 | 3.13E+04 | 1.76E-01 | GSF2LA | 1.80E+02 | 2.94E+01 | 2.45E+02 | 1.40E+02 | 1.15E+00 | ||
SFLA | 3.49E+04 | 5.33E+03 | 4.78E+04 | 3.06E+04 | 1.77E-01 | SFLA | 1.68E+02 | 3.64E+01 | 2.45E+02 | 1.30E+02 | 9.91E-01 | ||
HSA | 4.78E+04 | 1.31E-10 | 4.78E+04 | 4.78E+04 | 1.57E-01 | HSA | 2.45E+02 | 4.83E-13 | 2.45E+02 | 2.45E+02 | 1.50E-01 | ||
ABCA | 2.27E+04 | 1.48E+04 | 7.93E+04 | 1.34E+04 | 1.51E+00 | ABCA | 1.57E+02 | 4.27E+01 | 2.90E+02 | 1.24E+02 | 3.01E+00 |
算法 | 最短路径值 | 车辆1优化路径 | 车辆2优化路径 |
---|---|---|---|
NCSFLA-CVRP | 554.08 | 5-81-4-46-22-90-6-79 | 19-11-59-51-65-34-50-85 |
MSFLA-CVRP | 629.68 | 59-46-4-81-9-11-67-94 | 22-1-3-50-88-82-95-87 |
GSF2LA-CVRP | 634.21 | 98-16-4-17-58-67-53-65-82 | 38-59-11-75-32-69-8-12 |
SFLA-CVRP | 647.69 | 56-79-85-22-58-18-57-86-74 | 12-96-78-11-5-50-31-29 |
Table 3 Comparison of vehicle routing optimization algorithms for Solomon example data while K = 2
算法 | 最短路径值 | 车辆1优化路径 | 车辆2优化路径 |
---|---|---|---|
NCSFLA-CVRP | 554.08 | 5-81-4-46-22-90-6-79 | 19-11-59-51-65-34-50-85 |
MSFLA-CVRP | 629.68 | 59-46-4-81-9-11-67-94 | 22-1-3-50-88-82-95-87 |
GSF2LA-CVRP | 634.21 | 98-16-4-17-58-67-53-65-82 | 38-59-11-75-32-69-8-12 |
SFLA-CVRP | 647.69 | 56-79-85-22-58-18-57-86-74 | 12-96-78-11-5-50-31-29 |
算法 | 最短路径值 | 车辆1优化路径 | 车辆2优化路径 | 车辆3优化路径 | 车辆4优化路径 |
---|---|---|---|---|---|
NCSFLA-CVRP | 479.75 | 69-40-41-49-11-5-46-12 | 71-4-76-96-24-83-61-13-86-98-60-64-47 | 33-65-9-38-55-77-44-19 | 34-63-22-20-17-10-91-66-78 |
MSFLA-CVRP | 552.85 | 87-97-17-68-36-89-85-57-65 | 12-58-16-27-34-95-33-30-35-83 | 90-64-74-46-60-75-28-21-53-98-18-80 | 11-86-94-56-22-26-38 |
GSF2LA-CVRP | 566.62 | 64-21-15-80-5-87-53-36-92-83-52 | 96-89-42-85-93-94-25-44-6-17 | 23-76-97-73-49-30-33-40-69-65 | 10-38-61-18-68-75-95 |
SFLA-CVRP | 578.84 | 86-7-85-11-82-45-90-50-8-3 | 95-36-49-34-22-93-66 | 78-21-73-96-57-62-87-24-23-48 | 38-26-46-13-97-61-35-70-91-68-55 |
Table 4 Comparison of vehicle routing optimization algorithms for Solomon example data while K = 4
算法 | 最短路径值 | 车辆1优化路径 | 车辆2优化路径 | 车辆3优化路径 | 车辆4优化路径 |
---|---|---|---|---|---|
NCSFLA-CVRP | 479.75 | 69-40-41-49-11-5-46-12 | 71-4-76-96-24-83-61-13-86-98-60-64-47 | 33-65-9-38-55-77-44-19 | 34-63-22-20-17-10-91-66-78 |
MSFLA-CVRP | 552.85 | 87-97-17-68-36-89-85-57-65 | 12-58-16-27-34-95-33-30-35-83 | 90-64-74-46-60-75-28-21-53-98-18-80 | 11-86-94-56-22-26-38 |
GSF2LA-CVRP | 566.62 | 64-21-15-80-5-87-53-36-92-83-52 | 96-89-42-85-93-94-25-44-6-17 | 23-76-97-73-49-30-33-40-69-65 | 10-38-61-18-68-75-95 |
SFLA-CVRP | 578.84 | 86-7-85-11-82-45-90-50-8-3 | 95-36-49-34-22-93-66 | 78-21-73-96-57-62-87-24-23-48 | 38-26-46-13-97-61-35-70-91-68-55 |
[1] | 颜腾威. 求解VRP问题的改进和声搜索算法的研究[D]. 金华: 浙江师范大学, 2015. |
YAN T W. Research of improved harmony search algori-thm for VRP[D]. Jinhua: Zhejiang Normal University, 2015. | |
[2] | LAU H C, CHAN T M, TSUI W T, et al. Application of ge-netic algorithms to solve the multidepot vehicle routing pro-blem[J]. IEEE Transactions on Automation Science & En-gineering, 2010, 7(2): 383-392. |
[3] |
PAVONE M, FRAZZOLI E, BULLO F. Adaptive and dis-tributed algorithms for vehicle routing in a stochastic and dynamic environment[J]. IEEE Transactions on Automatic Control, 2011, 56(6): 1259-1274.
DOI URL |
[4] | ZHAO Z X, WAN F C. The solving of vehicle routing prob-lem based on hybrid harmony search algorithm[C]// Procee-dings of the 3rd International Conference on Computa-tional Intelligence and Industrial Application, 2010: 379-382. |
[5] | EUSUFF M M, LANSEY K E. Optimization of water distri-bution network design using the shuffled frog leaping algo-rithm[J]. Journal of Water Resources Planning and Manage-ment, 2003, 129(3): 210. |
[6] | 姚应龙. 混合蛙跳算法及其应用研究[D]. 深圳: 深圳大学, 2015. |
YAO Y L. Research on shuffled frog leaping algorithm and its application[D]. Shenzhen: Shenzhen University, 2015. | |
[7] | 郑俊褒, 饶珊珊. 改进蛙跳算法的小波神经网络短时交通流预测[J]. 软件导刊, 2020, 19(4): 50-54. |
ZHENG J B, RAO S S. Short-term traffic flow prediction of wavelet neural network based on the improved shuffled flog leaping algorithm[J]. Software Guide, 2020, 19(4): 50-54. | |
[8] | 黄遥. 混合蛙跳算法及其在带容量约束的车辆路径问题中的应用研究[D]. 南京: 南京信息工程大学, 2020. |
HUANG Y. Shuffled frog leaping algorithm and its appli-cations on the capacitated vehicle routing problem[D]. Nan-jing: Nanjing University of Information Science and Tech-nology, 2020. | |
[9] | 骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429-434. |
LUO J P, LI X, CHEN M R. Improved shuffled frog leaping algorithm for solving CVRP[J]. Journal of Elec-tronics & Information Technology, 2011, 33(2): 429-434. | |
[10] | 万博, 卢昱, 陈立云, 等. 求解CVRP的改进混合蛙跳算法研究[J]. 计算机应用研究, 2011, 28(12): 4503-4506. |
WAN B, LU Y, CHEN L Y, et al. Study of modified shuf-fled frog leaping algorithm for solving CVRP[J]. Applica-tion Research of Computers, 2011, 28(12): 4503-4506. | |
[11] | 蔡延光, 王世豪, 戚远航, 等. 帝国竞争算法求解CVRP[J]. 计算机应用研究, 2021, 38(3): 782-786. |
CAI Y G, WANG S H, QI Y H, et al. Imperialist compe-titive algorithm for solving CVRP[J]. Application Research of Computers, 2021, 38(3): 782-786. | |
[12] | ZHU X N, ZHAO Z Q, YAN R. Low carbon logistics opti-mization for multi-depot CVRP with backhauls-model and solution[J]. Technical Gazette, 2020, 27(5): 1617-1624. |
[13] | KHACHAY M Y, OGORODNIKOV Y, KHACHAY D. Efficient approximation of the metric CVRP in spaces of fixed doubling dimension[J]. Journal of Global Optimiza-tion, 2021, 80(3): 679-710. |
[14] | 黄子峻, 曾楚祥, 戚远航. CVRP的改进离散蝙蝠算法[J]. 工业控制计算机, 2020, 33(8): 100-101. |
HUANG Z J, ZENG C X, QI Y H. Improve discrete bat algorithm for CVRP[J]. Industrial Control Computer, 2020, 33(8): 100-101. | |
[15] | 向明尚, 张强. 求解带容量约束车辆路径问题的离散布谷鸟算法[J]. 东北石油大学学报, 2021, 45(1): 95-101. |
XIANG M S, ZHANG Q. Discrete cuckoo algorithm for vehi-cle routing with capacity constraints[J]. Journal of Northeast Petroleum University, 2021, 45(1): 95-101. | |
[16] | 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273. |
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273. | |
[17] | 韩立钦, 张耀南, 秦其明. 深度学习自编码结合混合蛙跳算法提取农田高光谱影像端元[J]. 农业工程学报, 2019, 35(6): 167-173. |
HAN L Q, ZHANG Y N, QIN Q M. Endmember extraction of farmland hyperspectral image using deep learning auto-encoder and shuffled frog leaping algorithm[J]. Transa-ctions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 167-173. | |
[18] |
MOHAN G S S S S V K, RAO Y S. An efficient design of fractional order differentiator using hybrid shuffled frog leaping algorithm for handling noisy electrocardiograms[J]. International Journal of Computers and Applications, 2021, 43(5): 494-500.
DOI URL |
[19] | 孟磊磊, 张彪, 任亚平, 等. 求解分布式柔性作业车间调度的混合蛙跳算法[J]. 机械工程学报, 2021, 57(17): 263-272. |
MENG L L, ZHANG B, REN Y P, et al. Hybrid shuffled frog-leaping algorithm for distributed flexible job shop schedu-ling[J]. Journal of Mechanical Engineering, 2021, 57(17): 263-272.
DOI URL |
|
[20] | 鲁建厦, 翟文倩, 李嘉丰, 等. 基于改进混合蛙跳算法的多约束车辆路径优化[J]. 浙江大学学报(工学版), 2021, 55(2): 259-270. |
LU J S, ZHAI W Q, LI J F, et al. Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 259-270. | |
[21] | 任龙杰, 孙颖, 丁卫平, 等. 基于单种群蛙跳优化CNN的眼底图像多病变检测[J]. 计算机科学与探索, 2021, 15(9): 1762-1772. |
REN L J, SUN Y, DING W P, et al. Multiple lesions detec-tion of fundus images based on convolution neural network algorithm optimized by single population frog jumping algo-rithm[J]. Journal of Frontiers of Computer Science and Tech-nology, 2021, 15(9): 1762-1772. | |
[22] | 塔诺季, 迪于, 拉洛埃. 量子力学(第一卷)[M]. 刘家谟, 陈星奎, 译. 北京: 高等教育出版社, 2014. |
TANNOUDJI C C, DIU B, LALOE F. Mecanique quan-tique I[M]. LIU J M, CHEN X K. Beijing: Higher Education Press, 2014. | |
[23] | 代永强, 王联国. 带记忆功能的混合蛙跳算法[J]. 计算机工程与设计, 2011, 32(9): 3170-3173. |
DAI Y Q, WANG L G. Shuffled frog leaping algorithm with memory function[J]. Computer Engineering and Design, 2011, 32(9): 3170-3173. | |
[24] | 刘立群, 王联国, 韩俊英, 等. 基于全局共享因子的混合蛙跳算法[J]. 计算机工程, 2013, 39(10): 162-166. |
LIU L Q, WANG L G, HAN J Y, et al. Shuffled frog lea-ping algorithm based on global sharing factor[J]. Compu-ter Engineering, 2013, 39(10): 162-166. | |
[25] |
GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 76(2): 60-68.
DOI URL |
[26] | KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimi-zation, 2007, 39(3): 459-471. |
[27] |
MOUSAVIRAD S J, EBRAHIMPOUR-KOMLEH H. Hu-man mental search: a new population-based metaheuris-tic opti-mization algorithm[J]. Applied Intelligence, 2017, 47: 850-887.
DOI URL |
[28] | AWAD N H, ALI M Z, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization[R]. Singapore: Nanyang Technological University, 2016. |
[1] | REN Longjie, SUN Ying, DING Weiping, JU Hengrong, CAO Jinxin. Multiple Lesions Detection of Fundus Images Based on CNN Algorithm Optimized by Single Population Frog-Leaping Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1762-1772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/