Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (6): 1429-1438.DOI: 10.3778/j.issn.1673-9418.2011010
• Graphics and Image • Previous Articles
SHEN Ruicai1,2, ZHAI Junhai1,2,+(), HOU Yingzhen1,2
Received:
2020-11-04
Revised:
2021-01-05
Online:
2022-06-01
Published:
2021-01-28
About author:
SHEN Ruicai, born in 1993, M.S. candidate. Her research interest is deep learning.Supported by:
通讯作者:
+ E-mail: mczjh@126.com作者简介:
申瑞彩(1993—),女,河北邯郸人,硕士研究生,主要研究方向为深度学习。基金资助:
CLC Number:
SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438.
申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2011010
网络 | Con1 | Con2 | Con3 | Con4 |
---|---|---|---|---|
EGAN-3 | (28,28,1) | (14,14,32/16/8) | (7,7,64/32/16) | (4,4,128/64/32) |
EGAN-4 | (28,28,1) | (14,14,64/32/16/8) | (7,7,128/64/32/16) | (4,4,256/128/64/32) |
EGAN-5 | (28,28,1) | (14,14,128/64/32/16/8) | (7,7,256/128/64/32/16) | (4,4,512/256/128/64/32) |
EGAN-6 | (28,28,1) | (14,14,256/128/64/32/16/8) | (7,7,512/256/128/64/32/16) | (4,4,1 024/512/256/128/64/32) |
Table 1 Convolution layers configuration of each discriminant network for MNIST dataset
网络 | Con1 | Con2 | Con3 | Con4 |
---|---|---|---|---|
EGAN-3 | (28,28,1) | (14,14,32/16/8) | (7,7,64/32/16) | (4,4,128/64/32) |
EGAN-4 | (28,28,1) | (14,14,64/32/16/8) | (7,7,128/64/32/16) | (4,4,256/128/64/32) |
EGAN-5 | (28,28,1) | (14,14,128/64/32/16/8) | (7,7,256/128/64/32/16) | (4,4,512/256/128/64/32) |
EGAN-6 | (28,28,1) | (14,14,256/128/64/32/16/8) | (7,7,512/256/128/64/32/16) | (4,4,1 024/512/256/128/64/32) |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.819±0.314 | 1.916±0.263 | 2.010±0.206* | 1.852±0.316 |
均值方式 | 1.736±0.247 | 1.788±0.308 | 1.809±0.207 | 1.503±0.401 |
Table 2 IS score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.819±0.314 | 1.916±0.263 | 2.010±0.206* | 1.852±0.316 |
均值方式 | 1.736±0.247 | 1.788±0.308 | 1.809±0.207 | 1.503±0.401 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 3.872 | 3.360 | 3.027* | 3.618 |
均值方式 | 4.304 | 4.588 | 4.562 | 4.621 |
Table 3 FID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 3.872 | 3.360 | 3.027* | 3.618 |
均值方式 | 4.304 | 4.588 | 4.562 | 4.621 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 31.65±1.52 | 30.42±1.49 | 29.98±1.46* | 31.21±1.40 |
均值方式 | 34.51±1.72 | 34.33±1.32 | 34.21±1.49 | 35.02±1.54 |
Table 4 KID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 31.65±1.52 | 30.42±1.49 | 29.98±1.46* | 31.21±1.40 |
均值方式 | 34.51±1.72 | 34.33±1.32 | 34.21±1.49 | 35.02±1.54 |
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.201±0.040 | 4.351 | 50.96±1.73 |
DCGAN(集成) | 1.572±0.310 | 3.780 | 37.64±1.49 |
GMAN | 1.602±0.430 | 3.726 | 36.04±1.40 |
EGAN-5 | 2.010±0.206* | 3.027* | 29.98±1.46* |
Table 5 Score of different models under three evaluation indices
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.201±0.040 | 4.351 | 50.96±1.73 |
DCGAN(集成) | 1.572±0.310 | 3.780 | 37.64±1.49 |
GMAN | 1.602±0.430 | 3.726 | 36.04±1.40 |
EGAN-5 | 2.010±0.206* | 3.027* | 29.98±1.46* |
层数 | Con2 | Con3 | Con4 | Con5 | Con6 |
---|---|---|---|---|---|
3 | (80,64,16/8/4) | (40,32,32/16/8) | (20,16,64/32/16) | (10,8,128/64/32) | (5,4,256/128/64) |
4 | (80,64,32/16/8/4) | (40,32,64/32/16/8) | (20,16,128/64/32/16) | (10,8,256/128/64/32) | (5,4,512/256/128/64) |
5 | (80,64,64/32/16/8/4) | (40,32,128/64/32/16/8) | (20,16,256/128/64/32/16) | (10,8,512/256/128/64/32) | (5,4,1 024/512/256/128/64) |
6 | (80,64,128/64/32/16/8/4) | (40,32,256/128/64/32/16/8) | (20,16,512/256/128/64/32/16) | (10,8,1 024/512/256/128/64/32) | (5,4,512/256/256/128/128/64) |
Table 6 Convolution layers configuration of each discriminant network for CelebA dataset
层数 | Con2 | Con3 | Con4 | Con5 | Con6 |
---|---|---|---|---|---|
3 | (80,64,16/8/4) | (40,32,32/16/8) | (20,16,64/32/16) | (10,8,128/64/32) | (5,4,256/128/64) |
4 | (80,64,32/16/8/4) | (40,32,64/32/16/8) | (20,16,128/64/32/16) | (10,8,256/128/64/32) | (5,4,512/256/128/64) |
5 | (80,64,64/32/16/8/4) | (40,32,128/64/32/16/8) | (20,16,256/128/64/32/16) | (10,8,512/256/128/64/32) | (5,4,1 024/512/256/128/64) |
6 | (80,64,128/64/32/16/8/4) | (40,32,256/128/64/32/16/8) | (20,16,512/256/128/64/32/16) | (10,8,1 024/512/256/128/64/32) | (5,4,512/256/256/128/128/64) |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 2.716±0.630 | 3.242±0.512 | 3.413±0.426* | 2.967±0.583 |
均值方式 | 2.391±0.232 | 2.502±0.374 | 2.401±0.246 | 2.304±0.913 |
Table 7 IS score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 2.716±0.630 | 3.242±0.512 | 3.413±0.426* | 2.967±0.583 |
均值方式 | 2.391±0.232 | 2.502±0.374 | 2.401±0.246 | 2.304±0.913 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.381 | 1.196 | 1.094* | 1.265 |
均值方式 | 1.649 | 1.588 | 1.701 | 1.647 |
Table 8 FID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.381 | 1.196 | 1.094* | 1.265 |
均值方式 | 1.649 | 1.588 | 1.701 | 1.647 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 0.402±0.496 | 0.204±0.451 | 0.196±0.216* | 0.365±0.401 |
均值方式 | 0.594±0.824 | 0.571±0.763 | 0.497±0.801 | 0.734±0.671 |
Table 9 KID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 0.402±0.496 | 0.204±0.451 | 0.196±0.216* | 0.365±0.401 |
均值方式 | 0.594±0.824 | 0.571±0.763 | 0.497±0.801 | 0.734±0.671 |
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.561±0.412 | 2.406 | 1.473±0.504 |
DCGAN(集成) | 2.013±0.892 | 1.998 | 0.996±0.291 |
GMAN | 2.541±0.340 | 1.942 | 0.983±0.274 |
EGAN-5 | 3.413±0.426* | 1.094* | 0.196±0.216* |
Table 10 Score of different models under three evaluation indices
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.561±0.412 | 2.406 | 1.473±0.504 |
DCGAN(集成) | 2.013±0.892 | 1.998 | 0.996±0.291 |
GMAN | 2.541±0.340 | 1.942 | 0.983±0.274 |
EGAN-5 | 3.413±0.426* | 1.094* | 0.196±0.216* |
[1] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Proces-sing Systems, Montréal, Dec 8-13, 2014. Cambridge: MIT Press, 2014: 2672-2680. |
[2] | DURUGKER I, GEMP I, MAHADEVAN S. Generative multi-adversarial networks[EB/OL]. [2018-07-04]. https://open-review.net/forum?id=Byk-VI9eg . |
[3] | 兰远东, 曾树洪. 动态加权投票的多分类器聚合[J]. 现代计算机(专业版), 2014(2): 8-11. |
LAN Y D, ZENG S H. Multiple classifier fusion with dyna-mic weighted voting[J]. Modern Computer, 2014(2): 8-11. | |
[4] |
SCHUTZ B, ILYAS S, LE K, et al. Nanoparticle arrays having directed hybrid topology via covalent self-assembly of iron oxide and silica nanoparticles[J]. ACS Applied Nano Materials, 2020, 3(6): 5936-5943.
DOI URL |
[5] |
CHAKRABORTY S, ROY M. A multi-level weighted trans-formation based neuro-fuzzy domain adaptation technique using stacked auto-encoder for land-cover classification[J]. International Journal of Remote Sensing, 2020, 41(17): 6831-6857.
DOI URL |
[6] |
ZORAN J, NICOLA C, PRATS D B, et al. A highly parame-terizable framework for conditional restricted Boltzmann machine based workloads accelerated with FPGAs and OpenCL[J]. Future Generation Computer Systems, 2020, 104: 201-211.
DOI URL |
[7] |
ZHENG J, SU Y X, ZHANG D H, et al. Velocity forecasts using a combined deep learning model in hybrid electric vehicles with V2V and V2I communication[J]. Science China Technological Sciences, 2020, 63(1): 55-64.
DOI URL |
[8] |
HAN Z, TAO X, HONGSHENG L, et al. StackGAN++: rea-listic image synthesis with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1947-1964.
DOI URL |
[9] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial net-works[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251. |
[10] | HOFFMAN J, TZENG E, PARK T, et al. Cycle-consistent adversarial domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2962-2971. |
[11] | HUANG H, LIU M Y, BELONGIE S J, et al. Multimodal unsupervised image-to-image translation[C]// LNCS 11207: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 179-196. |
[12] | RADFOD A, METZ L, CHINTALA S. Unsupervised rep-resentation learning with deep convolutional generative ad-versarial networks[J]. Computer Science, 2015, 47(8): 169-183. |
[13] | CHEN X, DUAN Y, HOUTHOOFT R, et al. Info-GAN: in-terpreter representation learning by information maximi-zing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran As-sociates, 2016: 2172-2180. |
[14] | 方敏. 集成学习的多分类器动态融合方法研究[J]. 系统工程与电子技术, 2006, 28(11): 1759-1761. |
FANG M. Study of integration method for multiple classifiers on ensemble learning[J]. Systems Engineering and Elec-tronics, 2006, 28(11): 1759-1761. | |
[15] | LIU Y M, TUZEL O. Coupled generative adversarial net-works[C]// Proceedings of the 30th International Confe-rence on Neural Information Processing Systems, Barce-lona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 469-477. |
[16] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 171-196. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua Uni-versity Press, 2016: 171-196. | |
[17] | 郑哲, 胡庆浩, 刘青山, 等. 量化权值激活的生成对抗网络[J]. 计算机科学, 2020, 47(5): 144-148. |
ZHENG Z, HU Q H, LIU Q S, et al. Quantizing weights and activations in generative adversarial networks[J]. Com-puter Science, 2020, 47(5): 144-148. | |
[18] | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. |
WANG K F, GOU C, DUAN Y J, et al. Generative adver-sarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332. | |
[19] | 张春霞, 张讲社. 选择性集成学习算法综述[J]. 计算机学报, 2011, 34(8): 1399-1410. |
ZHANG C X, ZHANG J S. A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011, 34(8): 1399-1410.
DOI URL |
[1] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[2] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[3] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[4] | MA Yongjie, XU Xiaodong, ZHANG Ru, XIE Yirong, CHEN Hong. Generative Adversarial Network and Its Research Progress in Image Generation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811. |
[5] | LI Guangli, HUA Jin, YUAN Tian, ZHU Tao, WU Renzhong, JI Donghong, ZHANG Hongbin. Recommendation System Based on Users' Preference Mining Generative Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 803-814. |
[6] | LI Junjie, WANG Qian. Perceptually Similar Image Classification Adversarial Example Generation Model [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1930-1942. |
[7] | LIANG Junjie, WEI Jianjing, JIANG Zhengfeng. Generative Adversarial Networks GAN Overview [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 1-17. |
[8] | SHI Cheng, PAN Bin, GUO Xiaoming, LI Qinqin, ZHANG Luyue, ZHONG Fan. Application of Generative Adversarial Networks in Image Completion [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1402-1410. |
[9] | SHANG Xianzhen, HAN Meng, SUN Yuzhong, SUN Yuning, CHEN Xu, HU Manman, MEI Yudong. Skin Diseases Diagnosis Method Based on Generative Adversarial Networks and Naive Bayes [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 1005-1015. |
[10] | DING Yue, HUANG Ling, WANG Changdong. Link Prediction Based on Generative Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 554-562. |
[11] | XU Ouyang, LI Guanghui. Anomaly Data Detection Using Glowworm Optimization and Random Forest in Wireless Sensor Networks [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(10): 1633-1644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/