Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (10): 2358-2376.DOI: 10.3778/j.issn.1673-9418.2307065
• Special Issue on Large Language Models and Knowledge Graphs • Previous Articles Next Articles
LI Yuan, MA Xinyu, YANG Guoli, ZHAO Huiqun, SONG Wei
Online:
2023-10-01
Published:
2023-10-01
李源,马新宇,杨国利,赵会群,宋威
LI Yuan, MA Xinyu, YANG Guoli, ZHAO Huiqun, SONG Wei. Survey of Causal Inference for Knowledge Graphs and Large Language Models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376.
李源, 马新宇, 杨国利, 赵会群, 宋威. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2307065
[1] YING Q, XU D S H. The birth of analytical action philosophy—from the point of “causal explanation”[J]. Tianjin Soc Sci, 2021, 12(2): 57. [2] GREENLAND S, PEARL J, ROBINS J M. Confounding and collapsibility in causal inference[J]. Statistical Science, 1999, 14(1): 29. [3] 王朱君, 王石, 李雪晴, 等. 面向深度学习的事件因果关系抽取综述[J]. 计算机应用, 2021, 41(5): 1247-1255. WANG Z J, WANG S, LI X Q, et al. A review of event causal relation extraction based on deep learning[J]. Com-puter Applications, 2021, 41(5): 1247-1255. [4] 胡志磊, 靳小龙, 陈剑赟, 等. 事件图谱的构建、推理与应用[J]. 大数据, 2021, 7(3): 80-96. HU Z L, JIN X L, CHEN J Y, et al. Construction, inference, and application of event knowledge graph[J]. Big Data, 2021, 7(3): 80-96. [5] 黄紫阳. 基于生物医学知识图谱和药物分子结构的药物-药物相互作用预测[D]. 武汉: 华中农业大学, 2022. HUANG Z Y. Prediction of drug-drug interactions based on biomedical knowledge graphs and drug molecular structures[D]. Wuhan: Huazhong Agricultural University, 2022. [6] GUO R, CHENG L, LI J, et al. A survey of learning causality with data: problems and methods[J]. arXiv:1809.09337v4, 2018. [7] YAO L, CHU Z, LI S, et al. A survey on causal inference[J]. ACM Transactions on Knowledge Discovery from Data, 2021(5). [8] GONG C, YAO D, ZHANG C, et al. Causal discovery from temporal data: an overview and new perspectives[J]. arXiv:2303.10112, 2023. [9] MOLUGARAM K, RAO G S. Chi-square distribution[M]// Statistical Techniques for Transportation Engineering, 2017:383-413. [10] BENESTY J, CHEN J, HUANG Y, et al.?Pearson correla-tion coefficient[M]//Springer Topics in Signal Processing, 2009: 1-4. [11] KOROL R M, CANHAM P B, LUCAS A R. Multiple reg-ression analysis[J]. Biophotonics International, 1960, 12(8): 47-48. [12] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, pre-diction, and search[M]. Cambridge: MIT Press, 2000. [13] JOWETT G H. Statistical methods and scientific inference[J]. Journal of the Royal Statistical Society, 1957, 6(3): 226-227. [14] SPLAWA-NEYMAN J, DABROWSKA D M, SPEED T P. On the application of probability theory to agricultural ex-periments. Essay on principles. Section 9[J]. Statistical Science, 1990, 5(4): 465-472. [15] RUBIN D B. Estimating causal effects of treatments in ran-domized and nonrandomized studies[J]. Journal of Educa-tional Psychology, 1974, 66(5): 688. [16] ROSENBAUM P R, RUBIN D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. [17] BICKEL P J, HAMMEL E A, O??CONNELL J W. Sex bias in graduate admissions: data from Berkeley[J]. Science, 1975, 187(4175): 398. [18] RUBIN D B. Causal inference using potential outcomes: de-sign, modeling, decisions[J]. Journal of the American Statis-tical Association, 2005, 100(469): 322-331. [19] MUNCH M, DIBIE-BARTHELEMY J, WUILLEMIN P H, et al. Interactive causal discovery in knowledge graphs[C]// Proceedings of the 2019 International Semantic Web Con-ference, 2019: 78-93. [20] YUAN K H, BENTLER P M. 10 structural equation mo-deling[J]. Handbook of Statistics, 2006, 26: 297-358. [21] AWANG Z, AFTHANORHAN A, ASRI M A M. Parametric and non parametric approach in structural equation modeling (SEM): the application of bootstrap[J]. Modern Applied Science, 2015, 9(9): 58. [22] HITCHCOCK C, PEARL J. Causality: models, reasoning and inference[J]. Philosophical Review, 2001, 110(4): 639. [23] PEARL J. Probabilistic reasoning in intelligent systems: net-works of plausible inference[M]. San Mateo: Morgan Kau-fmann, 1988. [24] SPIEGELHALTER D J, DAWID A P, LAURITZEN S L, et al. Bayesian analysis in expert systems[J]. Statistical Science, 1993: 219-247. [25] WILLIAMS T C, BACH C C, MATTHIESEN N B, et al. Directed acyclic graphs: a tool for causal studies in paedia-trics[J]. Pediatric research, 2018, 84(4): 487-493. [26] LAURITZEN S L, SPIEGELHALTER D J. Local compu-tations with probabilities on graphical structures and their application to expert systems[M]. San Francisco: Morgan Kaufmann Publishers Inc., 1990. [27] RICHARDSON T S, ROBINS J M. Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality[Z]. 2013. [28] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, predic-tion, and search[M]. 2nd ed. Cambridge: MIT Press, 2001. [29] CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2003, 3: 507-554. [30] ZHANG J. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias[J]. Artificial Intelligence, 2008. [31] PEARL J. Probabilistic reasoning in intelligent systems-networks of plausible inference[M]. San Mateo: Morgan Kaufmann, 1988. [32] SHIMIZU S, HOYER P O, HYVRINEN A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(4): 2003-2030. [33] CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2002, 3: 507-554. [34] ZHU S, NG I, CHEN Z. Causal discovery with reinforcement learning[J]. arXiv:1906.04477, 2019. [35] HECKERMAN D. Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery, 1997, 1(1): 79-119. [36] HECKERMAN D, MEEK C, COOPER G. A Bayesian app-roach to causal discovery: MSR-TR-97-05[R]. 1997. [37] MORGAN. Counterfactuals and causal inference[M]. Cam-bridge: Cambridge University Press, 2007. [38] GARCIA D. COATIS, an NLP system to locate expressions of actions connected by causality links[C]//Proceedings of the 1997 International Conference on Knowledge Engineering and Knowledge Management. Berlin, Heidelberg: Springer, 1997: 347-352. [39] KHOO C S G, KORNFILT J, ODDY R N, et al. Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing[J]. Literary and Linguistic Computing, 1998, 13(4): 177-186. [40] DE SILVA T N, XIAO Z B, ZHAO R, et al. Causalrelation identification using convolutional neural networks and know-ledge based features[J]. International Journal of Computer and Systems Engineering, 2017, 11(6): 697-702. [41] HIDEY C, MCKEOWN K. Identifying causalrelations using parallel Wikipedia articles[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 1424-1433. [42] ZHAO S D, LIU T, ZHAO S C, et al. Event causality ex-traction based on connectives analysis[J]. Neurocomputing, 2016, 173: 1943-1950. [43] 冯冲, 康丽琪, 石戈, 等. 融合对抗学习的因果关系抽取[J]. 自动化学报, 2018, 44(5): 811-818. FENG C, KANG L Q, SHI G, et al. Causality extraction with GAN[J]. Acta Automatica Sinica, 2018, 44(5): 811-818. [44] KRUENGKRAI C, TORISAWA K, HASHIMOTO C, et al.Improving event causality recognition with multiple background knowledge sources using multi-column convolutional neural networks[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017: 3466-3473. [45] FU J F, LIU Z T, LI W, et al. Event causal relation extrac-tion based on cascaded conditional random fields[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(4): 567-573. [46] DASGUPTA T, SAHA R, DEY L, et al. Automatic extrac-tion of causal relations from text using linguistically in-formed deep neural networks[C]//Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, 2018. [47] QIU J N, XU L W, ZHAI J, et al. Extracting causal relations from emergency cases based on conditional random fields[J]. Procedia Computer Science, 2017, 112: 1623-1632. [48] BLEI D M, NG A, JORDAN M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003. [49] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [50] VEITCH V, SRIDHAR D, BLEI D M. Adapting text em-beddings for causal inference[C]//Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, Aug 3-6, 2020: 919-928. [51] ROBERTS M E, STEWART B M, NIELSEN R A. Adjusting for confounding with text matching[J]. American Journal of Political Science, 2020(1). [52] SRIDHAR D, GETOOR L. Estimating causal effects of tone in online debates[J]. arXiv:1906.04177, 2019. [53] MOZER R, MIRATRIX L, KAUFMAN A R, et al. Matching with text data: an experimental evaluation of methods for matching documents and of measuring match quality[J]. Po-litical Analysis, 2018. [54] MILLER G A. WordNet:a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [55] PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap[J]. arXiv:2306. 08302, 2023. [56] 马昂, 于艳华, 杨胜利, 等. 基于强化学习的知识图谱综述[J]. 计算机研究与发展, 2022, 59(8): 1694-1722. MA A, YU Y H, YANG S L, et al. Survey of knowledge graph based on reinforcement learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. [57] 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. SONG H N, ZHAO G, SUN R Y. Developments of know-ledge reasoning based on deep reinforcement learning[J]. Computer Engineering and Applications, 2022, 58(1): 12-25. [58] 张仲伟, 曹雷, 陈希亮, 等. 基于神经网络的知识推理研究综述[J]. 计算机工程与应用, 2019, 55(12): 8-19. ZHANG Z W, CAO L, CHEN X L, et al. Survey of know-ledge reasoning based on neural network[J]. Computer En-gineering and Applications, 2019, 55(12): 8-19. [59] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[J]. arXiv:1612. 03975, 2016. [60] SINGHAL A. Introducing the knowledge graph:things,not strings[EB/OL]. [2023-05-09]. https://www.blog.google/pro-ducts/search/introducing-knowledge-graph-things-not/. [61] JAIMINI U, SHETH A. CausalKG: causal knowledge graph explainability using interventional and counterfactual reasoning[J]. IEEE Internet Computing, 2022, 26(1): 43-50. [62] HUANG H. Causal relationship over knowledge graphs[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 5116-5119. [63] MUNCH M, DIBIE-BARTHELEMY J, WUILLEMIN P H ,et al. Towards interactive causal relation discovery driven by an ontology[C]//Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, Sarasota, May 19-22, 2019. Menlo Park: AAAI Press, 2019: 504-508. [64] LUCAS S, PERNELLE N, SA?S F, et al. Differential causal rules mining in knowledge graphs[C]//Proceedings of the 11th Knowledge Capture Conference, 2021: 105-112. [65] NOVAK P K, LAVRA? N, WEBB G I. Supervised descrip-tive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining[J]. Journal of Machine Learning Research, 2009, 10(2). [66] RAAD J, PERNELLE N, SA?S F. Detection of contextual identity links in a knowledge base[C]//Proceedings of the Knowledge Capture Conference, 2017: 1-8. [67] PETROVA A, SHERKHONOV E, CUENCA GRAU B, et al. Entity comparison in RDF graphs[C]//Proceedings of the 16th International Semantic Web Conference, Vienna, Oct 21-25, 2017: 526-541. [68] DU L, DING X, XIONG K, et al. ExCAR: event graph know-ledge enhanced explainable causal reasoning[C]//Proceedings of the 59th Annual Meeting of the Association for Computa-tional Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 2354-2363. [69] ZEEVI M, DHAMI D S, VELIKOVI P, et al. Relating graph neural networks to structural causal models[J]. arXiv.2109.04173, 2021. [70] WEI Y, WANG X, NIE L, et al. Causal inference for know-ledge graph based recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022. [71] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv:2303.18223, 2023. [72] PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap[J]. arXiv:2306.08302, 2023. [73] JIN Z, LIU J, LYU Z, et al. Can large language models infer causation from correlation?[J]. arXiv:2306.05836, 2023. [74] SUNG M, LEE J, YI S, et al. Can language models be bio-medical knowledge bases?[J]. arXiv:2109.07154, 2021. [75] WANG X, KAPANIPATHI P, MUSA R, et al. Improving natural language inference using external knowledge in the science questions domain[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 7208-7215. [76] LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning[J]. arXiv: 1909.02151, 2019. [77] FENG Y, CHEN X, LIN B Y, et al. Scalable multi-hop re-lational reasoning for knowledge-aware question answering [J]. arXiv:2005.00646, 2020. [78] YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv:2104.06378, 2021. [79] SUN Y, SHI Q, QI L, et al. JointLK: joint reasoning with language models and knowledge graphs for commonsense question answering[J]. arXiv:2112.02732, 2021. [80] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. arXiv:2005. 11401, 2020. [81] WILMOT D, KELLER F. Memory and knowledge augmented language models for inferring salience in long-form stories[J]. arXiv:2109.03754, 2021. [82] WU Y, ZHAO Y, HU B, et al. An efficient memory-augmented transformer for knowledge-intensive NLP tasks[J]. arXiv: 2210.16773, 2022. [83] GUU K, LEE K, TUNG Z, et al. REALM: retrieval-augmented language model pre-training[J]. arXiv:2002.08909, 2020. [84] LOGAN IV R L, LIU N F, PETERS M E, et al. Barack??s wife hillary: using knowledge-graphs for fact-aware language modeling[J]. arXiv:1906.07241v1, 2019. [85] DANILEVSKY M, QIAN K, AHARONOV R, et al. A survey of the state of explainable AI for natural language pro-cessing[J]. arXiv:2010.00711, 2020. [86] JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[J]. ACM Computing Surveys, 2023, 55(12): 1-38. [87] PETRONI F, ROCKTSCHEL T, LEWIS P, et al. Language models as knowledge bases?[J]. arXiv:1909.01066, 2019. [88] JIANG Z, XU F F, ARAKI J, et al. How can we know what language models know?[J]. arXiv:1911.12543, 2019. [89] ADOLPHS L, DHULIAWALA S, HOFMANN T. How to query language models?[J]. arXiv:2108.01928, 2021. [90] SHIN T, RAZEGHI Y, LOGAN I R L, et al. AutoPrompt: eliciting knowledge from language models with automati-cally generated prompts[J]. arXiv:2010.15980v1, 2020. [91] SUNG M, LEE J, YI S, et al. Can language models be biomedical knowledge bases?[J]. arXiv:2109.07154, 2021. [92] MENG Z, LIU F, SHAREGHI E, et al. Rewire-then-Probe: a contrastive recipe for probing biomedical knowledge of pre-trained language models[J]. arXiv:2110.08173, 2021. [93] MALLEN A, ASAI A, ZHONG V, et al. When not to trust language models: investigating effectiveness and limitations of parametric and non-parametric memories[J]. arXiv:2212.10511, 2022. [94] LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning[J]. arXiv: 1909.02151, 2019. [95] LI S, LI X, SHANG L, et al. How pre-trained language models capture factual knowledge? A causal-inspired analysis[J]. arXiv: 2203.16747, 2022. [96] SWAMY V, ROMANOU A, JAGGI M. Interpreting language models through knowledge graph extraction[J]. arXiv:2111. 08546, 2021. [97] DAI D, DONG L, HAO Y, et al. Knowledge neurons in pretrained transformers[J]. arXiv:2104.08696, 2021. [98] CHRISTIANO P, LEIKE J, BROWN T B, et al. Deep rein-forcement learning from human preferences[J]. arXiv:1706.03741, 2017. [99] GAO J, ZHAO H, YU C L, et al. Exploring the feasibility of ChatGPT for event extraction[J]. arXiv:2303.03836, 2023. [100] QIN C, ZHANG A, ZHANG Z, et al. Is ChatGPT a general-purpose natural language processing task solver?[J]. arXiv:2302.06476, 2023. [101] ZHU Y, WANG X, CHEN J, et al. LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities[J]. arXiv:2305.13168, 2023. [102] MA Y, CAO Y, HONG Y C, et al. Large language model is not a good few-shot information extractor, but a good re-ranker for hard samples![J]. arXiv:2303.08559, 2023. [103] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994. GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994. [104] NAYYERI M, WANG Z, AKTER M, et al. Integrating knowledge graph embedding and pretrained language mo-dels in hypercomplex spaces[J]. arXiv:2208.02743, 2022. [105] HUANG N, DESHPANDE Y R, LIU Y, et al. Endowing language models with multimodal knowledge graph repre-sentations[J]. arXiv:2206.13163, 2022. [106] ALAM M M, RONY M R A H, NAYYERI M, et al. Lan-guage model guided knowledge graph embeddings[J]. IEEE Access, 2022, 10: 76008-76020. [107] ZHANG N, XIE X, CHEN X, et al. Reasoning through me-morization: nearest neighbor knowledge graph embeddings[J]. arXiv:2201.05575, 2022. [108] XIE X, LI Z, WANG X, et al. LambdaKG: a library for pre-trained language model-based knowledge graph embeddings[J]. arXiv:2210.00305, 2022. [109] SHEN J, WANG C, GONG L, et al. Joint language semantic and structure embedding for knowledge graph completion[J]. arXiv:2209.08721, 2022. [110] CHOI B, KO Y. Knowledge graph extension with a pre-trained language model via unified learning method[J]. Knowledge-Based Systems, 2023, 262: 110245. [111] LI D, YI M, HE Y. LP-BERT: multi-task pre-training know-ledge graph BERT for link prediction[J]. arXiv:2201.04843, 2022. [112] ZHU Y, WANG X, CHEN J, et al. LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities[J]. arXiv:2305.13168, 2023. [113] 阮彤, 王梦婕, 王昊奋, 等. 垂直知识图谱的构建与应用研究[J]. 知识管理论坛, 2016(3): 226-234. RUAN T, WANG M J, WANG H F, et al. Research on the construction and application of vertical knowledge graphs[J]. Knowledge Management Forum, 2016(3): 226-234. [114] LIU Q, LIN H, XIAO X, et al. Fine-grained entity typing via label reasoning[J]. arXiv:2109.05744v1, 2021. [115] CATTAN A, EIREW A, STANOVSKY G, et al. Cross-document coreference resolution over predicted mentions[J]. arXiv:2106.01210, 2021. [116] HAN J, COLLIER N, BUNTINE W, et al. PiVe: prompting with iterative verification improving graph-based generative capability of LLMs[J]. arXiv:2305.12392, 2023. [117] WEST P, BHAGAVATULA C, HESSEL J, et al. Symbolic knowledge distillation: from general language models to commonsense models[J]. arXiv:2110.07178, 2021. [118] 冉紫涵, 张仰森, 向尕, 等. 因果关系抽取研究综述[J]. 北京信息科技大学学报(自然科学版), 2023, 38(3): 89-100. RAN Z H, ZHANG Y S, XIANG G, et al. A review of causal relation extraction research[J]. Journal of Beijing Informa-tion Science & Technology University (Natural Science Edition), 2023, 38(3): 89-100. [119] 王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法, 实践与应用[J]. 自动化博览, 2020(1): 7. WANG H F, QI G L, CHEN H J. Knowledge graphs: me-thods, practices, and applications[J]. Automation Panorama, 2020(1): 7. [120] 王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(7): 2139-2174. WANG X, ZOU L, WANG C K, et al. A review of know-ledge graph data management[J]. Journal of Software, 2019, 30(7): 2139-2174. |
[1] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[2] | QIAN Fulan, WANG Wenxue, ZHENG Wenjie, CHEN Jie, ZHAO Shu. Reserved Hierarchy-Based Knowledge Graph Embedding for Link Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2174-2183. |
[3] | YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao. Advances in Knowledge Graph Embedding Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813. |
[4] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
[5] | PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong. Survey on Few-Shot Knowledge Graph Completion Technology [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1268-1284. |
[6] | ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791. |
[7] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[8] | YIN Hua, XIAO Shiran, CHEN Zhiquan, HU Zhensheng, LONG Yongchao. Knowledge Graph Completion Method Based on Multi-semantic Relation Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 467-477. |
[9] | MA Li, YAO Weifan. Link Prediction Method Combining Relational Path and Directed Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 478-488. |
[10] | ZHAI Yanhui, HE Xu, LI Deyu, ZHANG Chao. Knowledge Graph Inference Method Combined with Decision Implication [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2743-2754. |
[11] | LIANG Xinyu, SI Guannan, LI Jianxin, TIAN Pengxin, AN Zhaoliang, ZHOU Fengyu. Survey on Inductive Learning for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2580-2604. |
[12] | XU Xinran, WANG Tengyu, LU Cai. Research Progress of Graph Neural Network in Knowledge Graph Construction and Application [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2278-2299. |
[13] | ZHANG Heyi, WANG Xin, HAN Lifan, LI Zhao, CHEN Zirui, CHEN Zhe. Research on Question Answering System on Joint of Knowledge Graph and Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388. |
[14] | PENG Huang, ZENG Weixin, ZHOU Jie, TANG Jiuyang, ZHAO Xiang. Contrast Research of Representation Learning in Entity Alignment Based on Graph Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2343-2357. |
[15] | PAN Yudai, ZHANG Lingling, CAI Zhongmin, ZHAO Tianzhe, WEI Bifan, LIU Jun. Differentiable Rule Extraction with Large Language Model for Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2403-2412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/