Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (5): 1017-1037.DOI: 10.3778/j.issn.1673-9418.2209100
• Frontiers·Surveys • Previous Articles Next Articles
XU Yan, GUO Xiaoyan, RONG Leilei
Online:
2023-05-01
Published:
2023-05-01
徐岩,郭晓燕,荣磊磊
XU Yan, GUO Xiaoyan, RONG Leilei. Review of Research on Vehicle Re-identification Methods with Unsupervised Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1017-1037.
徐岩, 郭晓燕, 荣磊磊. 无监督学习的车辆重识别方法研究综述[J]. 计算机科学与探索, 2023, 17(5): 1017-1037.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209100
[1] HU X, XU X, XIAO Y, et al. SINet: a scale-insensitive convolutional neural network for fast vehicle detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 1010-1019. [2] 王左帅, 谭德荣, 徐艺, 等. 一种基于多类特征融合的车辆识别方法[J]. 现代电子技术, 2020, 43(1): 31-34. WANG Z S, TAN D R, XU Y, et al. A vehicle recognition method based on multi-class feature fusion[J]. Modern Elec-tronics Technique, 2020, 43(1): 31-34. [3] 杨娟, 曹浩宇, 汪荣贵, 等. 基于语义DCNN特征融合的细粒度车型识别模型[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 141-157. YANG J, CAO H Y, WANG R G, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design & Computer Grap-hics, 2019, 31(1): 141-157. [4] LI X, YU L, CHANG D, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4204-4212. [5] TAN X, WANG Z, JIANG M, et al. Multi-camera vehicle tracking and re-identification based on visual and spatial-temporal features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 275-284. [6] JI X, ZHANG G, CHEN X, et al. Multi-perspective tracking for intelligent vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 518-529. [7] ASTHANA S, SHARMA N, SINGH R. Vehicle number plate recognition using multiple layer back propagation neural networks[J]. International Journal of Computer Technology and Electronics Engineering, 2011, 1(1): 35. [8] PAN M S, YAN J B, XIAO Z H. Vehicle license plate cha-racter segmentation[J]. International Journal of Automation and Computing, 2008, 5(4): 425-432. [9] MUSA Z B, WATADA J. A grid-computing based multi-camera tracking system for vehicle plate recognition[J]. Ky-bernetika, 2006, 42(4): 495-514. [10] KWONG K, KAVALER R, RAJAGOPAL R, et al. Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(6): 586-606. [11] PRINSLOO J, MALEKIAN R. Accurate vehicle location system using RFID, an Internet of things approach[J]. Sensors, 2016, 16(6): 825. [12] ZHANG Z, TAN T, HUANG K, et al. Three-dimensional deformable-model-based localization and recognition of road vehicles[J]. IEEE Transactions on Image Processing, 2011, 21(1): 1-13. [13] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [14] LIU X, LIU W, MA H, et al. Large-scale vehicle re-identi-fication in urban surveillance videos[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo, Seattle, Jul 11-15, 2016. Washington: IEEE Computer Society, 2016: 1-6. [15] ZAPLETAL D, HEROUT A. Vehicle re-identification for automatic video traffic surveillance[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 25-31. [16] CORMIER M, SOMMER L W, TEUTSCH M. Low resolution vehicle re-identification based on appearance features for wide area motion imagery[C]//Proceedings of the 2016 IEEE Winter Applications of Computer Vision, Lake Placid, Mar 7-10, 2016. Washington: IEEE Computer Society, 2016: 1-7. [17] 宋克臣, 颜云辉, 陈文辉, 等. 局部二值模式方法研究与展望[J]. 自动化学报, 2013, 39(6): 730-744. SONG K C, YAN Y H, CHEN W H, et al. Research and perspective on local binary pattern[J]. Acta Automatica Sinica, 2013, 39(6): 730-744. [18] LI L, ZHANG X, XU Y. A network combining local fea-tures and attention mechanisms for vehicle re-identification[C]//Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, Xiamen, Sep 25-27, 2020. New York: ACM, 2020: 47-50. [19] LIU X, ZHANG S, HUANG Q, et al. RAM: a region-aware deep model for vehicle re-identification[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo, San Diego, Jul 23-27, 2018. Washington: IEEE Com-puter Society, 2018: 1-6. [20] HE B, LI J, ZHAO Y, et al. Part-regularized near-duplicate vehicle re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 3997-4005. [21] CHEN H, LAGADEC B, BREMOND F. Partition and reunion: a two-branch neural network for vehicle re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 184-192. [22] ZHU J, ZENG H, DU Y, et al. Joint feature and similarity deep learning for vehicle re-identification[J]. IEEE Access, 2018, 6: 43724-43731. [23] WU C W, LIU C T, CHIANG C E, et al. Vehicle re-iden-tification with the space-time prior[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recog-nition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 121-128. [24] ALFASLY S A S, HU Y, LIANG T, et al. Variational repre-sentation learning for vehicle re-identification[C]//Proceedings of the 2019 IEEE International Conference on Image Proces-sing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 3118-3122. [25] HUANG P, HUANG R, HUANG J, et al. Deep feature fusion with multiple granularity for vehicle re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 80-88. [26] WANG H, PENG J, CHEN D, et al. Attribute-guided feature learning network for vehicle reidentification[J]. IEEE Multi Media, 2020, 27(4): 112-121. [27] WEI X S, ZHANG C L, LIU L, et al. Coarse-to-fine: a RNN-based hierarchical attention model for vehicle re-identifica-tion[C]//LNCS 11362: Proceedings of the 14th Asian Con-ference on Computer Vision, Perth, Dec 2-6, 2018. Cham:Springer, 2018: 575-591. [28] RONG L, XU Y, ZHOU X, et al. A vehicle re-identification framework based on the improved multi-branch feature fusion network[J]. Scientific Reports, 2021, 11(1): 1-12. [29] KHORRAMSHAHI P, PERI N, KUMAR A, et al. Attention driven vehicle re-identification and unsupervised anomaly detection for traffic understanding[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 239-246. [30] RAO Y, CHEN G, LU J, et al. Counterfactual attention learning for fine-grained visual categorization and re-identi-fication[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 1025-1034. [31] PAN X, LIU X, SONG B, et al. Vehicle re-identification approach combining multiple attention mechanisms and style transfer[C]//Proceedings of the 2022 3rd International Con-ference on Pattern Recognition and Machine Learning, Chengdu, Jul 22-24, 2022. Piscataway: IEEE, 2022: 65-71. [32] LIU H, TIAN Y, YANG Y, et al. Deep relative distance lear-ning: tell the difference between similar vehicles[C]//Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 2167-2175. [33] ZHANG Y, LIU D, ZHA Z J. Improving triplet-wise trai-ning of convolutional neural network for vehicle re-identifi-cation[C]//Proceedings of the 2017 IEEE International Con-ference on Multimedia and Expo, Hong Kong, China, Jul 10-14, 2017. Washington: IEEE Computer Society, 2017: 1386-1391. [34] ANTONIO MARIN-REYES P, PALAZZI A, BERGA-MINI L, et al. Unsupervised vehicle re-identification using triplet networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 166-171. [35] BAI Y, LOU Y, GAO F, et al. Group-sensitive triplet embed-ding for vehicle reidentification[J]. IEEE Transactions on Multimedia, 2018, 20(9): 2385-2399. [36] HOU J, ZENG H, CAI L, et al. Multi-label learning with multi-label smoothing regularization for vehicle re-identifi-cation[J]. Neurocomputing, 2019, 345: 15-22. [37] LIN W, LI Y, YANG X, et al. Multi-view learning for vehi-cle re-identification[C]//Proceedings of the 2019 IEEE Inter-national Conference on Multimedia and Expo, Shanghai, Jul 7-12, 2019. Piscataway: IEEE, 2019: 832-837. [38] LIU X C, LIU W, MEI T, et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance[C]//LNCS 9906: Proceedings of the 14th Euro-pean Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 869-884. [39] YAN K, TIAN Y, WANG Y, et al. Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles[C]//Proceedings of the 2017 IEEE International Con-ference on Computer Vision, Venice, Oct 22-29, 2017. Was-hington: IEEE Computer Society, 2017: 562-570. [40] GUO H, ZHAO C, LIU Z, et al. Learning coarse-to-fine structured feature embedding for vehicle re-identification[C]//Proceedings of the 32nd AAAI Conference on Artifi-cial Intelligence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI, 2018: 6853-6860. [41] KANACI A, ZHU X T, GONG S G. Vehicle re-identifica-tion in context[C]//LNCS 11269: Proceedings of the 40th German Conference on Pattern Recognition, Stuttgart, Oct 9-12, 2018. Cham: Springer, 2018: 377-390. [42] LOU Y H, BAI Y, LIU J, et al.VERI-Wild: a large dataset and a new method for vehicle re-identification in the wild[C]//Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 3235-3243. [43] TANG Z, NAPHADE M, LIU M Y, et al. Cityflow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 8797-8806. [44] YAO Y, ZHENG L, YANG X D, et al. Simulating content consistent vehicle datasets with attribute descent[C]//LNCS 12351: Proceedings of the 16th European Conference on Com-puter Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 775-791. [45] 刘凯, 李浥东, 林伟鹏. 车辆再识别技术综述[J]. 智能科学与技术学报, 2020, 2(1): 10-25. LIU K, LI Y D, LIN W P. A survey on vehicle re-identifi-cation[J]. Chinese Journal of Intelligent Science and Tech-nology, 2020, 2(1): 10-25. [46] WANG J Y, ZHU X T, GONG S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2275-2284. [47] DING Y, FAN H, XU M, et al. Adaptive exploration for unsupervised person re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applica-tions, 2020, 16(1): 1-19. [48] PENG J, WANG H, XU F, et al. Cross domain knowledge learning with dual-branch adversarial network for vehicle re-identification[J]. Neurocomputing, 2020, 401: 133-144. [49] PENG J, WANG Y, WANG H, et al. Unsupervised vehicle re-identification with progressive adaptation[J]. arXiv:2006.11486, 2020. [50] WANG Y, PENG J, WANG H, et al. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification[J]. Science China Information Sciences, 2022, 65(6): 1-15. [51] ZHOU Z, LI Y, LI J, et al. GAN-Siamese network for cross-domain vehicle re-identification in intelligent transport sys-tems[J]. IEEE Transactions on Network Science and Engi-neering, 2022. DOI: 10.1109/TNSE.2022.3199919. [52] ZHOU Y, SHAO L. Cross-view GAN based vehicle genera-tion for re-identification[C]//Proceedings of the 28th British Machine Vision Conference, London, Sep 4-7, 2017. Durham: BMVA Press, 2017: 1-12. [53] ZHOU Y, SHAO L. Aware attentive multi-view inference for vehicle re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 6489-6498. [54] ZHANG F, MA Y, YUAN G, et al. Multiview image genera-tion for vehicle reidentification[J]. Applied Intelligence, 2021, 51(8): 5665-5682. [55] WANG Q, MIN W, HAN Q, et al. Viewpoint adaptation learning with cross-view distance metric for robust vehicle re-identification[J]. Information Sciences, 2021, 564: 71-84. [56] WU F, YAN S, SMITH J S, et al. Vehicle re-identification in still images: application of semi-supervised learning and re-ranking[J]. Signal Processing: Image Communication, 2019, 76: 261-271. [57] LOU Y, BAI Y, LIU J, et al. Embedding adversarial lear-ning for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3794-3807. [58] ZHU R, FANG J, XU H, et al. DCDLearn: multi-order deep cross-distance learning for vehicle re-identification[J]. arXiv:2003.11315, 2020. [59] WANG Q, MIN W, HAN Q, et al. Inter-domain adaptation label for data augmentation in vehicle re-identification[J]. IEEE Transactions on Multimedia, 2021, 24: 1031-1041. [60] BASHIR R M S, SHAHZAD M, FRAZ M M. VR-PROUD: vehicle re-identification using progressive unsupervised deep architecture[J]. Pattern Recognition, 2019, 90: 52-65. [61] SONG L, WANG C, ZHANG L, et al. Unsupervised domain adaptive re-identification: theory and practice[J]. Pattern Recognition, 2020, 102: 107173. [62] WANG H, PENG J, JIANG G, et al. Learning multiple sema-ntic knowledge for cross-domain unsupervised vehicle re-identification[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021. Piscataway: IEEE, 2021: 1-6. [63] DUBOURVIEUX F, LOESCH A, AUDIGIER R, et al. Im-proving unsupervised domain adaptive re-identification via source-guided selection of pseudo-labeling hyperparameters[J]. IEEE Access, 2021, 9: 149780-149795. [64] ZHANG X, GE Y, QIAO Y, et al. Refining pseudo labels with clustering consensus over generations for unsupervised object re-identification[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3436-3445. [65] WANG P, DING C, TAN W, et al. Uncertainty-aware clus-tering for unsupervised domain adaptive object re-identific-ation[J]. arXiv:2108.09682, 2021. [66] ZHENG A, SUN X, LI C, et al. Viewpoint-aware progres-sive clustering for unsupervised vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 11422-11435. [67] ZHU W, PENG B. Manifold-based aggregation clustering for unsupervised vehicle re-identification[J]. Knowledge-Based Systems, 2022, 235: 107624. [68] WANG Y, WEI Y, MA R, et al. Unsupervised vehicle re-identification based on mixed sample contrastive learning[J]. Signal, Image and Video Processing, 2022,16(8): 2083-2091. [69] ZHANG H, KOH J Y, BALDRIDGE J, et al. Cross-modal contrastive learning for text-to-image generation[C]//Procee-dings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 833-842. [70] 安晓东, 李亚丽, 王芳. 汽车驾驶辅助系统红外与可见光融合算法综述[J]. 计算机工程与应用, 2022, 58(19): 64-75. AN X D, LI Y Y, WANG F. Overview of infrared and visible image fusion algorithms for automotive driving assistance system[J]. Computer Engineering and Applications, 2022, 58(19): 64-75. [71] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th Inter-national Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014: 2672-2680. [72] RADFORD A, METZ L, CHINTALA S. Unsupervised rep-resentation learning with deep convolutional generative adver-sarial networks[J]. arXiv:1511.06434, 2015. [73] CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: inter-pretable representation learning by information maximizing generative adversarial nets[C]//Proceedings of the 29th Inter-national Conference on Neural Information Processing Sys-tems, Barcelona, Dec 5-10, 2016: 2172-2180. [74] ODENA A, OLAH C, SHLENS J. Conditional image syn-thesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2642-2651. [75] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [76] ALMAHAIRI A, RAJESHWAR S, SORDONI A, et al. Augmented CycleGAN: learning many-to-many mappings from unpaired data[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholm, Jul 10-15, 2018: 195-204. [77] YI S, LI J, YUAN X. DFPGAN: dual fusion path genera-tive adversarial network for infrared and visible image fusion[J]. Infrared Physics & Technology, 2021, 119: 103947. [78] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251. [79] YI Z L, ZHANG H, TAN P, et al. DualGAN: unsupervised dual learning for image-to-image translation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2849-2857. [80] WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Procee-dings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Was-hington: IEEE Computer Society, 2018: 79-88. [81] DENG W J, ZHENG L, YE Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 994-1003. [82] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [83] CAO H, TAN C, GAO Z, et al. A survey on generative dif-fusion model[J]. arXiv:2209.02646, 2022. [84] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial data-bases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Port-land, Aug 4-8, 1996. Menlo Park: AAAI, 1996: 226-231. |
[1] | DAN Yufang, TAO Jianwen, ZHAO Yue, PAN Jie, ZHAO Baoqi. Multi-model Adaptation Method of Possibilistic Clustering Assumption [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1329-1342. |
[2] | XUE Yanming, LI Guanghui, QI Tao. Traffic Prediction Method Integrating Graph Wavelet and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1405-1416. |
[3] | JIANG Kaibin, ZHOU Shibing, QIAN Xuezhong, GUAN Jiaojiao. Dynamic-Fusion Multi-view Projection Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1147-1156. |
[4] | ZHANG Zhiyuan, CHEN Yarui, YANG Jianning, DING Wenqiang, YANG Jucheng. Variational Deep Generative Clustering Model Under Entropy Regularizations [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 376-384. |
[5] | WANG Cong, WANG Jie, LIU Quanming, LIANG Jiye. Semi-supervised Learning on Graphs Using Adversarial Training with Generated Sample [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 367-375. |
[6] | YIN Hua, XIAO Shiran, CHEN Zhiquan, HU Zhensheng, LONG Yongchao. Knowledge Graph Completion Method Based on Multi-semantic Relation Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 467-477. |
[7] | Ailiminuer·Kuerban, XIE Juanying, YAO Ruoxia. Adaptive K-means Algorithm Combining Nearest-Neighbor Matrix and Local Density [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 355-366. |
[8] | MA Fuyuan, WANG Ying, LI Lina, WANG Hongji. Structure and Feature Fusion Graph Hierarchical Pooling Model [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 179-186. |
[9] | XIE Zipeng, BAO Chongming, ZHOU Lihua, WANG Chongyun, KONG Bing. EM Clustering Oversampling Algorithm for Class Imbalanced Data [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 228-237. |
[10] | HE Yunbin, LIU Wanxu, WAN Jing. Optimized Number of Reverse Neighbor Clustering Algorithm by Voronoi Diagram in Obstacle Space [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2041-2049. |
[11] | XU Jia, MO Xiaokun, YU Ge, LYU Pin, WEI Tingting. SQL-Detector: SQL Plagiarism Detection Technique Based on Coding Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2030-2040. |
[12] | CHEN Lei, WU Runxiu, LI Peiwu, ZHAO Jia. Weighted K-nearest Neighbors and Multi-cluster Merge Density Peaks Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176. |
[13] | ZHAO Liheng, WANG Jian, CHEN Hongjun. Density-Peak Clustering Algorithm on Decentralized and Weighted Clusters Merging [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1910-1922. |
[14] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[15] | GUO Yuhan, LIU Qiuyue. Dynamic Pickup-Point Recommendation Based on Spatiotemporal Trajectory and Hybrid Gain Evaluation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1611-1622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/