
Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (1): 217-230.DOI: 10.3778/j.issn.1673-9418.2209033
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
ZHANG Wenxuan, YIN Yanjun, ZHI Min
Online:2024-01-01
Published:2024-01-01
张文轩,殷雁君,智敏
ZHANG Wenxuan, YIN Yanjun, ZHI Min. Affection Enhanced Dual Graph Convolution Network for Aspect Based Sentiment Analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 217-230.
张文轩, 殷雁君, 智敏. 用于方面级情感分析的情感增强双图卷积网络[J]. 计算机科学与探索, 2024, 18(1): 217-230.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209033
| [1] LIU B. Sentiment analysis and opinion mining[M]//Synthesis Lectures on Human Language Technologies. San Rafael: Morgan & Claypool Publishers, 2012: 1-167. [2] 张严,李天瑞. 面向评论的方面级情感分析综述[J]. 计算机科学, 2020, 47(6): 194-200. ZHANG Y, LI T R. Review of comment-oriented aspect-based sentiment analysis[J]. Computer Science, 2020, 47(6): 194-200. [3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [4] LIU H, CHATTERJEE I, ZHOU M C, et al. Aspect-based sentiment analysis: a survey of deep learning methods[J]. IEEE Transactions on Computational Social Systems, 2020, 7(6): 1358-1375. [5] ZHANG W, LI X, DENG Y, et al. A survey on aspect-based sentiment analysis: tasks, methods, and challenges[J]. arXiv: 2203.01054, 2022. [6] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [7] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [8] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolu-tional networks[J]. Knowledge-Based Systems, 2022, 235: 107643. [9] TANG H, JI D, LI C, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classi-fication[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588. [10] LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceed-ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 6319-6329. [11] DING X, LIU B, YU P S. A holistic lexicon-based approach to opinion mining[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. New York:ACM, 2008: 231-240. [12] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014: 437-442. [13] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615. [14] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[J]. arXiv:1709.00893, 2017. [15] FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442. [16] HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Pred-iction and Behavior Representation in Modeling and Simul-ation. Cham: Springer, 2018: 197-206. [17] CHEN D, MANNING C D. A fast and accurate dependency parser using neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 740-750. [18] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional net-works[C]//Proceedings of the 2019 Conference on Empri-cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proces-sing. Stroudsburg: ACL, 2019: 4568-4578. [19] HUANG B, CARLEY K M. Syntax-aware aspect level sen-timent classification with graph attention networks[C]//Pro-ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5469-5477. [20] WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[J]. arXiv:2004.12362, 2020. [21] XU G, LIU P, ZHU Z, et al. Attention-enhanced graph con-volutional networks for aspect-based sentiment classifica-tion with multi-head attention[J]. Applied Sciences, 2021, 11(8): 3640. [22] CHEN C, TENG Z, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification[C]//Pro-ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 5596-5607. [23] MA Y, PENG H, CAMBRIA E. Targeted aspect-based senti-ment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2018: 5876-5883. [24] ZHONG Q, DING L, LIU J, et al. Knowledge graph aug-mented network towards multiview representation learning for aspect-based sentiment analysis[J]. arXiv:2201.04831, 2022. [25] SUN K, ZHANG R, MENSAH S, et al. Aspect-level senti-ment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Strouds-burg: ACL, 2019: 5679-5688. [26] CAMBRIA E, LI Y, XING F Z, et al. SenticNet 6: ensem-ble application of symbolic and subsymbolic AI for senti-ment analysis[C]//Proceedings of the 29th ACM Internatio-nal Conference on Information & Knowledge Management. New York: ACM, 2020: 105-114. [27] XING F Z, PALLUCCHINI F, CAMBRIA E. Cognitive-inspired domain adaptation of sentiment lexicons[J]. Infor-mation Processing & Management, 2019, 56(3): 554-564. [28] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35. [29] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classifica-tion[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54. [30] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. [31] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Asso-ciation for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54. [32] LI X, BING L, LAM W, et al. Transformation networks for target-oriented sentiment classification[J]. arXiv:1805.01086, 2018. [33] ZHANG M, QIAN T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549. [34] PANG S, XUE Y, YAN Z, et al. Dynamic and multi-channel graph convolutional networks for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2627-2636. |
| [1] | QI Xuanhao, ZHI Min. Review of Attention Mechanisms in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362. |
| [2] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
| [3] | LI Jin, XIA Hongbin, LIU Yuan. Dual Features Local-Global Attention Model with BERT for Aspect Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 205-216. |
| [4] | HE Xiangjie, SONG Xiaoning. Improved YOLOv4-Tiny Lightweight Target Detection Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150. |
| [5] | WANG Haiyong, PAN Haitao, LIU Guinan. Face Recognition Method Based on Attention Mechanism and Curriculum Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. |
| [6] | ZHAO Xiaoyan, SONG Wei. Attention Learning Particle Swarm Optimization Algorithm Guided by Aggrega-tion Indicator [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866. |
| [7] | XUE Yanming, LI Guanghui, QI Tao. Traffic Prediction Method Integrating Graph Wavelet and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1405-1416. |
| [8] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
| [9] | JIA Tianhao, PENG Li, DAI Feifei. Object Detector with Residual Learning and Multi-scale Feature Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111. |
| [10] | ZHAO Shan, ZHENG Ailing, LIU Zilu, GAO Yu. Object Detection Algorithm Based on Channel Separation Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125. |
| [11] | CHEN Xiaolei, LU Yubing, CAO Baoning, LIN Dongmei. Lightweight and High-Precision Dual-Channel Attention Mechanism Module [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 857-867. |
| [12] | HU Shuo, YAO Meiyu, SUN Linna, WANG Jie, ZHOU Si'en. Accurate Visual Tracking with Attention Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 868-878. |
| [13] | QI Xin, YUAN Feiniu, SHI Jinting, WANG Guiqian. Semantic Segmentation Algorithm of Multi-level Feature Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932. |
| [14] | XIA Hongbin, LI Qiang, LIU Yuan. Local and Global Feature Fusion Network Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 902-911. |
| [15] | SU Junkai, DUAN Xianhua, YE Zhaobing. Research on Corn Disease Detection Based on Improved YOLOv5 Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/