Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (12): 3189-3202.DOI: 10.3778/j.issn.1673-9418.2312030
• Theory·Algorithm • Previous Articles Next Articles
LIU Zhi, SONG Wei
Online:
2024-12-01
Published:
2024-11-29
刘志,宋威
LIU Zhi, SONG Wei. Search Guidance Network Assisted Dynamic Particle Swarm Optimization Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3189-3202.
刘志, 宋威. 搜索引导网络辅助的动态粒子群优化算法[J]. 计算机科学与探索, 2024, 18(12): 3189-3202.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2312030
[1] 罗逸轩, 刘建华, 胡任远, 等. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(9): 2151-2162. LUO Y X, LIU J H, HU R Y, et al. Particle swarm optimization combined with Q-learning of experience sharing strategy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2151-2162. [2] 罗仕杭, 何庆. 混沌精英池协同教与学改进的ChOA及其应用[J]. 计算机工程与应用, 2023, 59(6): 299-309. LUO S H, HE Q. Chimp optimization algorithm improved by chaos elite pool collaborative teaching-learning and its mechanical application[J]. Computer Engineering and Applications, 2023, 59(6): 299-309. [3] 黄志锋, 刘媛华, 任志豪, 等. 融合改进哈里斯鹰和改进动态窗口的机器人动态路径规划[J]. 计算机应用研究, 2024, 41(2): 450-458. HUANG Z F, LIU Y H, REN Z H, et al. Research on mobile robot dynamic path planning based on improved Harris hawk algorithm and improved dynamic window algorithm [J]. Application Research of Computers, 2024, 41(2): 450-458. [4] WANG Y, ZHOU J, LU Y, et al. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects[J]. Expert Systems with Applications, 2011, 38(11): 14231-14237. [5] 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J]. 计算机工程与应用, 2023, 59(9): 304-312. DU L Z, WANG Y H, XUAN Z F, et al. Research on knitted production line scheduling based on improved simulated annealing algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 304-312. [6] YAZDANI D, CHENG R, YAZDANI D, et al. A survey of evolutionary continuous dynamic optimization over two decades—part A[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 609-629. [7] KARIMI J, NOBAHARI H, POURTAKDOUST S H. A new hybrid approach for dynamic continuous optimization problems[J]. Applied Soft Computing, 2012, 12(3): 1158-1167. [8] ZHANG T, WANG H D, YUAN B, et al. Surrogate-assisted evolutionary Q-learning for black-box dynamic time-linkage optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(5): 1162-1176. [9] BOSE D, BISWAS S, KUNDU S, et al. A strategy pool adaptive artificial bee colony algorithm for dynamic environment through multi-population approach[C]//Proceedings of the 3rd International Conference on Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, Dec 20-22, 2012. Berlin, Heidelberg: Springer, 2012: 611-619. [10] 李飞, 乐强, 潘紫微, 等. 基于自动快速密度峰值聚类的粒子群动态优化算法[J]. 计算机应用, 2023, 43(S1): 154. LI F, YUE Q, PAN Z W, et al. Dynamic particle swarm optimization algorithm based on automatic fast density peak clustering[J]. Journal of Computer Applications, 2023, 43(S1): 154. [11] LUO W, LIN X, ZHU T, et al. A clonal selection algorithm for dynamic multimodal function optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100459. [12] KAZEMI K J, MEYBODI M R, RAHMANI A M. A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments[J]. Connection Science, 2020, 32(3): 239-263. [13] CAO L, XU L, GOODMAN E D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems[J]. Information Sciences, 2018, 453: 463-485. [14] LIU X F, ZHOU Y R, YU X, et al. Dual-archive-based particle swarm optimization for dynamic optimization[J]. Applied Soft Computing, 2019, 85: 105876. [15] BLACKWELL T, BRANKE J. Multi-swarm optimization in dynamic environments[C]//Workshops on Applications of Evolutionary Computation. Berlin, Heidelberg: Springer, 2004: 489-500. [16] SHARIFI A, NOROOZI V, BASHIRI M, et al. Two phased cellular PSO: a new collaborative cellular algorithm for optimization in dynamic environments[C]//Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2012: 1-8. [17] MUKHERJEE R, PATRA G R, KUNDU R, et al. Cluster-based differential evolution with crowding archive for niching in dynamic environments[J]. Information Sciences, 2014, 267: 58-82. [18] YAZDANI D, CHENG R, HE C, et al. Adaptive control of subpopulations in evolutionary dynamic optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6476-6489. [19] EMARY E, ZAWBAA H M, GROSAN C. Experienced gray wolf optimization through reinforcement learning and neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(3): 681-694. [20] MAVROVOUNIOTIS M, YANG S. Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors[J]. Applied Soft Computing, 2013, 13(10): 4023-4037. [21] DEBENER S, ULLSPERGER M, SIEGEL M, et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring[J]. Journal of Neuroscience, 2005, 25(50): 11730-11737. [22] CAO J, ZHANG K, YONG H, et al. Extreme learning machine with affine transformation inputs in an activation function[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2093-2107. [23] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70: 489-501. [24] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. [25] CHENG J, CHEN X, YANG H, et al. An enhanced k-means algorithm using agglomerative hierarchical clustering strategy[C]//Proceedings of the 2012 IEEE International Conference on Automatic Control and Artificial Intelligence, Xiamen, Mar 3-5, 2012. Piscataway: IEEE, 2012: 407-410. [26] MICHE Y, SORJAMAA A, BAS P, et al. OP-ELM: optimally pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2009, 21(1): 158-162. [27] 梁靓, 魏亚星, 李义鑫, 等. 基于非线性跨代差分进化的花授粉优化算法及其应用研究[J]. 电子学报, 2023, 51(9): 2445-2456. LIANG L, WEI Y X, LI Y X, et al. A flower pollination algorithm based on nonlinear cross-generation differential evolution and its application study[J]. Acta Electronica Sinica, 2023, 51(9): 2445-2456. [28] BONYADI M R, MICHALEWICZ Z. Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3): 370-385. [29] FANG W, SUN J, CHEN H, et al. A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population[J]. Information Sciences, 2016, 330: 19-48. [30] YAZDANI D, CHENG R, YAZDANI D, et al. A survey of evolutionary continuous dynamic optimization over two decades—part B[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 630-650. [31] BRANKE J, SCHMECK H. Designing evolutionary algorithms for dynamic optimization problems[M]//Advances in Evolutionary Computing: Theory and Applications. Berlin, Heidelberg: Springer, 2003: 239-262. [32] TROJANOWSKI K, MICHALEWICZ Z. Searching for optima in non-stationary environments[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1843-1850. [33] YAZDANI D, OMIDVAR M N, CHENG R, et al. Benchmarking continuous dynamic optimization: survey and generalized test suite[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3380-3393. [34] VAFASHOAR R, MEYBODI M R. A multi-population differential evolution algorithm based on cellular learning automata and evolutionary context information for optimization in dynamic environments[J]. Applied Soft Computing, 2020, 88: 106009. [35] FENG G, HUANG G B, LIN Q, et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks, 2009, 20(8): 1352-1357. [36] MENG M, ZHANG T, YANG W, et al. Diverse complementary part mining for weakly supervised object localization[J]. IEEE Transactions on Image Processing, 2022, 31: 1774-1788. [37] LI C, NGUYEN T T, YANG M, et al. An adaptive multipopulation framework for locating and tracking multiple optima[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(4): 590-605. [38] DAS S, MANDAL A, MUKHERJEE R. An adaptive differential evolution algorithm for global optimization in dynamic environments[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 966-978. [39] LIU X F, ZHAN Z H, GU T L, et al. Neural network-based information transfer for dynamic optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1557-1570. [40] LU X, TANG K, MENZEL S, et al. Dynamic optimization in fast-changing environments via offline evolutionary search[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(3): 431-445. |
[1] | WANG Haocheng, LI Ling. Hybrid Particle Swarm Algorithm with Dynamic Topology and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2065-2079. |
[2] | ZHANG Yifan, SONG Wei. Multi-objective Particle Swarm Optimization Algorithm Guided by Extreme Learning Decision Network [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1513-1525. |
[3] | ZHAO Xiaoyan, SONG Wei. Attention Learning Particle Swarm Optimization Algorithm Guided by Aggrega-tion Indicator [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866. |
[4] | LUO Yixuan, LIU Jianhua, HU Renyuan, ZHANG Dongyang, BU Guannan. Particle Swarm Optimization Combined with Q-learning of Experience Sharing Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2151-2162. |
[5] | LI Chengyan, SONG Yue, MA Jintao. RIOPSO Algorithm for Fuzzy Cloud Resource Scheduling Problem [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1534-1545. |
[6] | ZHONG Qianyi, QIAN Qian, FU Yunfa, FENG Yong. Survey of Particle Swarm Optimization Algorithm for Association Rule Mining [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 777-793. |
[7] | JI Wei, LI Yingmei, JI Weidong, ZHANG Long. Two-Population Comprehensive Learning PSO Algorithm Based on Particle Per-mutation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 766-776. |
[8] | DENG Zhicheng, SUN Hui, ZHAO Jia, WANG Hui. Stochastic Single-Dimensional Mutated Particle Swarm Optimization with Dynamic Subspace [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1409-1426. |
[9] | ZHANG Qiwen, WEI Yachen. Particle Swarm Optimization with Independent Adaptive Parameter Adjustment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 637-648. |
[10] | CHENG Tianyi, WANG Yagang, LONG Xu, PAN Xiaoying. Multi-Level Dimensionality Reduction of Head and Neck Cancer Image Feature Selection Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 669-679. |
[11] | SONG Wei, HUA Ziyu. Particle Swarm Optimization with Social Influence [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1908-1919. |
[12] | WANG Jinjie, LI Wei. Multi-Objective Feature Selection Method Based on Hybrid MI and PSO Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 83-95. |
[13] | LIWei, CHAO Xiuqin. Improved Particle Swarm Optimization Method for Feature Selection [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 990-1004. |
[14] | WANG Lijuan, DING Shifei. SVM-ELM Model Based on Particle Swarm Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 657-665. |
[15] | YUAN Luo, GE Hongwei, JIANG Daoyin. Partical Swarm Optimization Algorithm with Adaptive Filter Based on Health Degree [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 332-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/