[1] ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[2] FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 417-426.
[3] 李邵莹, 孟丹, 孔超, 等. 面向社交推荐的自适应高阶隐式关系建模[J]. 软件学报, 2023, 34(10): 4851-4869.
LI S Y, MENG D, KONG C, et al. Adaptive high-order implicit relations modeling for social recommendation[J]. Journal of Software, 2023, 34(10): 4851-4869.
[4] 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250.
GAO Y, LIU Y. Recommendation algorithm combining social relationship and knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250.
[5] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27(1): 415-444.
[6] MARSDEN P V, FRIEDKIN N E. Network studies of social influence[J]. Sociological Methods & Research, 1993, 22(1): 127-151.
[7] TANG J L, HU X, LIU H. Social recommendation: a review[J]. Social Network Analysis and Mining, 2013, 3(4): 1113-1133.
[8] MA H, YANG H X, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Know-ledge Management, Napa Valley, Oct 26-30, 2008. New York: ACM, 2008: 931-940.
[9] MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, Jul 19-23, 2009. New York: ACM, 2009: 203-210.
[10] MA H, ZHOU D Y, LIU C, et al. Recommender systems with social regularization[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, China, Feb 9-12, 2011. New York: ACM, 2011: 287-296.
[11] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648.
[12] ZHANG J N, SHI X J, ZHAO S L, et al. STAR-GCN: stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Morgan Kaufmann, 2019: 4264-4270.
[13] WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2023, 55(5): 1-37.
[14] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[15] WU L, SUN P, FU Y, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 235-244.
[16] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 3558-3565.
[17] YU J, YIN H, LI J, et al. Self-supervised multi-channel hyper-graph convolutional network for social recommendation[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 413-424.
[18] ZHU Z R, GAO C, CHEN X, et al. Inhomogeneous social recommendation with hypergraph convolutional networks[C]//Proceedings of the 38th IEEE International Conference on Data Engineering, Kuala Lumpur, May 9-12, 2022. Piscataway: IEEE, 2022: 1437-1449.
[19] HAN J D, TAO Q, TANG Y F, et al. DH-HGCN: dual homo-geneity hypergraph convolutional network for multiple social recommendations[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2190-2194.
[20] LIU X, ZHANG F J, HOU Z Y, et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876.
[21] MA J X, ZHOU C, YANG H X, et al. Disentangled self-supervision in sequential recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 483-491.
[22] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 726-735.
[23] XIA L H, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 70-79.
[24] XIA L H, HUANG C, ZHANG C X. Self-supervised hypergraph transformer for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York: ACM, 2022: 2100-2109.
[25] WEI W, HUANG C, XIA L H, et al. Contrastive meta learning with behavior multiplicity for recommendation[C]//Procee-dings of the 15th ACM International Conference on Web Search and Data Mining, Feb 21-25, 2022. New York: ACM, 2022: 1120-1128.
[26] GU S Y, WANG X, SHI C, et al. Self-supervised graph neural networks for multi-behavior recommendation[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Messe Wien, Jul 23-29, 2022. San Francisco: Morgan Kaufmann, 2022: 2052-2058.
[27] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. [2023-11-20]. https://arxiv.org/abs/1611.07308.
[28] KINGMA P D, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-11-20]. https://arxiv.org/abs/1312.6114.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[30] WANG T L, XIA L H, HUANG C. Denoised self-augmented learning for social recommendation[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, Macau, China, Aug 19-25, 2023. San Francisco: Morgan Kaufmann, 2023: 2324-2331.
[31] OORD A , LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. [2023-11-20]. https://arxiv.org/abs/1807.03748. |