Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (12): 3311-3323.DOI: 10.3778/j.issn.1673-9418.2402056
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
ZHU Yi, WANG Gensheng, JIN Wenwen, HUANG Xuejian, LI Sheng
Online:
2024-12-01
Published:
2024-11-29
朱奕,王根生,金文文,黄学坚,李胜
ZHU Yi, WANG Gensheng, JIN Wenwen, HUANG Xuejian, LI Sheng. Network Rumor Detection Based on Enhanced Textual Semantics and Weighted Comment Stance[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3311-3323.
朱奕, 王根生, 金文文, 黄学坚, 李胜. 基于文本语义增强和评论立场加权的网络谣言检测[J]. 计算机科学与探索, 2024, 18(12): 3311-3323.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2402056
[1] 谢欣彤, 胡悦阳, 刘譞哲, 等. 传播用户代表性特征学习的谣言检测方法[J]. 计算机科学与探索, 2022, 16(6): 1334-1342. XIE X T, HU Y Y, LIU X Z, et al. Rumor detection based on representative user characteristics learning through propagation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1334-1342. [2] ZHENG P, HUANG Z, DOU Y, et al. Rumor detection on social media through mining the social circles with high homogeneity[J]. Information Sciences, 2023, 642: 119083. [3] MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 18-23, 2015. New York: ACM, 2015: 1751-1754. [4] 黄学坚, 马廷淮, 王根生. 基于分层语义特征学习模型的微博谣言事件检测[J]. 数据分析与知识发现, 2023, 7(5): 81-91. HUANG X J, MA T H, WANG G S. Weibo rumor events detection based on hierarchical semantic feature learning model[J]. Data Analysis and Knowledge Discovery, 2023, 7(5): 81-91. [5] ZHOU H, MA T, RONG H, et al. MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection[J]. Expert Systems with Applications, 2022, 195: 116517. [6] MA T, ZHOU H, TIAN Y, et al. A novel rumor detection algorithm based on entity recognition, sentence reconfiguration, and ordinary differential equation network[J]. Neurocomputing, 2021, 447: 224-234. [7] FANG L, FENG K, ZHAO K, et al. Unsupervised rumor detection based on propagation tree VAE[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10309-10323. [8] 汪建梅, 彭云, 余晨钰. 融合时间序列与卷积神经网络的网络谣言检测[J]. 小型微型计算机系统, 2022, 43(5): 1020-1026. WANG J M, PENG Y, YU C Y. Network rumor detection combining time series and convolutional neural network[J]. Journal of Chinese Computer System, 2022, 43(5):1020-1026. [9] KALIYAR R K, GOSWAMI A, NARANG P, et al. FNDNet: a deep convolutional neural network for fake news detection[J]. Cognitive Systems Research, 2020, 61: 32-44. [10] AJAO O, BHOWMIK D, ZARGARI S. Fake news identification on Twitter with hybrid CNN and RNN models[C]// Proceedings of the 9th International Conference on Social Media and Society, Copenhagen, Jul 18-20, 2018. New York: ACM, 2018: 226-230. [11] ALKHODAIR S A, DING S H H, FUNG B C M, et al. Detecting breaking news rumors of emerging topics in social media[J]. Information Processing & Management, 2020, 57(2): 102018. [12] CHENG M, LI Y, NAZARIAN S, et al. From rumor to genetic mutation detection with explanations: a GAN approach[J]. Scientific Reports, 2021, 11(1): 5861. [13] XU F, SHENG V S, WANG M. Near real-time topic-driven rumor detection in source microblogs[J]. Knowledge-Based Systems, 2020, 207: 106391. [14] 王根生, 朱奕, 李胜. 一种融合知识图谱的图注意力神经网络谣言实时检测方法[J]. 数据分析与知识发现, 2024, 8(6): 95-106. WANG G S, ZHU Y, LI S. A real-time rumor detection method based on graph attention neural network integrated with knowledge graph[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 95-106. [15] SINGH J P, KUMAR A, RANA N P, et al. Attention-based LSTM network for rumor veracity estimation of Tweets[J]. Information Systems Frontiers, 2020, 24: 459-474. [16] 黄学坚, 王根生, 罗远胜, 等. 融合多元用户特征和内容特征的微博谣言实时检测模型[J]. 小型微型计算机系统, 2022, 43(12): 2518-2527. HUANG X J, WANG G S, LUO Y S, et al. Weibo rumors real-time detection model based on fusion of multi user features and content features[J]. Journal of Chinese Computer System, 2022, 43(12): 2518-2527. [17] 刘金硕, 冯阔, PAN J Z, 等. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336. LIU J S, FENG K, PAN J Z, et al. MSRD: multi-modal web rumor detection method[J]. Journal of Computer Research and Development, 2020, 57(11): 2328-2336. [18] CHEN J, WU Z, YANG Z, et al. Multimodal fusion network with contrary latent topic memory for rumor detection[J]. IEEE MultiMedia, 2022, 29(1): 104-113. [19] HUANG X, MA T, JIA L, et al. An effective multimodal representation and fusion method for multimodal intent recognition[J]. Neurocomputing, 2023, 548: 126373. [20] YADAV A, GABA S, KHAN H, et al. ETMA: efficient transformer-based multilevel attention framework for multimodal fake news detection[J]. IEEE Transactions on Computational Social Systems, 2024, 11(4): 5015-5027. [21]刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015- 2029. LIU H L, CHENG S H, CAO S J, et al. Survey of fake news detection with multi-model learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015- 2029. [22] DAVOUDI M, MOOSAVI M R, SADREDDINI M H. DSS: a hybrid deep model for fake news detection using propagation tree and stance network[J]. Expert Systems with Applications, 2022, 198: 116635. [23] ZHANG P, RAN H, JIA C, et al. A lightweight propagation path aggregating network with neural topic model for rumor detection[J]. Neurocomputing, 2021, 458: 468-477. [24] MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 708-717. [25] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Palo Alto: AAAI, 2016: 3818-3824. [26] MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1980-1989. [27] MA J, GAO W, JOTY S, et al. An attention-based rumor detection model with tree-structured recursive neural networks[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(4): 1-28. [28] CHEN T, LI X, YIN H, et al. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection[C]//Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Jun 3, 2018. Cham: Springer, 2018: 40-52. [29] 胡斗, 卫玲蔚, 周薇, 等. 一种基于多关系传播树的谣言检测方法[J]. 计算机研究与发展, 2021, 58(7): 1395-1411. HU D, WEI L W, ZHOU W, et al. A rumor detection approach based on multi-relational propagation tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. [30] HUANG Q, ZHOU C, WU J, et al. Deep spatial-temporal structure learning for rumor detection on Twitter[J]. Neural Computing and Applications, 2023, 35: 12995-13005. [31] YU K, JIANG H, LI T, et al. Data fusion oriented graph convolution network model for rumor detection[J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2171-2181. [32] BAI N, MENG F, RUI X, et al. Rumor detection based on graph convolutional neural net[J]. IEEE Access, 2021, 9: 21686-21693. [33] WU Z, PI D, CHEN J, et al. Rumor detection based on propagation graph neural network with attention mechanism[J]. Expert Systems with Applications, 2020, 158: 113595. [34] LIU X, ZHAO Z, ZHANG Y, et al. Social network rumor detection method combining dual-attention mechanism with graph convolutional network[J]. IEEE Transactions on Com- putational Social Systems, 2022, 10(5): 2350-2361. [35] ALSAIF H F, ALDOSSARI H D. Review of stance detection for rumor verification in social media[J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105801. [36] ZHU Y, WANG G, LI S, et al. A novel rumor detection method based on non-consecutive semantic features and comment stance[J]. IEEE Access, 2023, 11: 58016-58024. [37] LI C, PENG H, LI J, et al. Joint stance and rumor detection in hierarchical heterogeneous graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2530-2542. [38] YE K, PIAO Y, ZHAO K, et al. Graph enhanced BERT for stance-aware rumor verification on social media[C]//Proceedings of the 30th International Conference on Artificial Neural Networks, Bratislava, Sep 14-17, 2021. Cham: Springer, 2021: 422-435. [39] HAN X, HUANG Z, LU M, et al. Rumor verification on social media with stance-aware recursive tree[C]//Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management, Tokyo, Aug 14-16, 2021. Cham: Springer, 2021: 149-161. [40] TU K, CHEN C, HOU C, et al. Rumor2vec: a rumor detection framework with joint text and propagation structure representation learning[J]. Information Sciences, 2021, 560: 137-151. [41] LOTFI S, MIRZAREZAEE M, HOSSEINZADEH M, et al. Detection of rumor conversations in Twitter using graph convolutional networks[J]. Applied Intelligence, 2021, 51: 4774-4787. [42] SUN M, ZHANG X, ZHENG J, et al. DDGCN: dual dynamic graph convolutional networks for rumor detection on social media[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 22-Mar 1, 2022. Palo Alto: AAAI, 2022: 4611-4619. [43] XU S, LIU X, MA K, et al. Rumor detection on social media using hierarchically aggregated feature via graph neural networks[J]. Applied Intelligence, 2023, 53(3): 3136-3149. [44] CHEN X, ZHOU F, TRAJCEVSKI G, et al. Multi-view learning with distinguishable feature fusion for rumor detection[J]. Knowledge-Based Systems, 2022, 240: 108085. [45] INAN E. ZoKa: a fake news detection method using edge-weighted graph attention network with transfer models[J]. Neural Computing and Applications, 2022, 34(14): 11669-11677. [46] TSAI Y H H, BAI S, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 6558-6569. [47] CHEN L, LIANG J, XIE C, et al. Short text entity linking with fine-grained topics[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 457-466. |
[1] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
[2] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
[3] | WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959. |
[4] | WEN Wen, DENG Fengying, HAO Zhifeng, CAI Ruichu, LIANG Fangyu. Recommendation Method for Time-Sequence Point of Interest via Spatio-Temporal Vicinity Perception [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878. |
[5] | FENG Jun, CHANG Yanghong, LU Jiamin, TANG Hailin, LYU Zhipeng, QIU Yuchun. Construction and Application of Knowledge Graph for Water Engineering Scheduling Based on Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647. |
[6] | LIU Yuan, DONG Yongquan, CHEN Cheng, JIA Rui, YIN Chan. Graph Neural Network Integrating Hot Spots and Long and Short-Term Interests for Course Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. |
[7] | ZHAI Wenshuo, ZHAO Xiang, CHEN Dong. Source Localization of Network Information Propagation via Invertible Graph Diffusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1348-1356. |
[8] | QIAN Zhongsheng, ZHANG Ding, LI Duanming, WANG Yahui, YAO Changsen, YU Qingyuan. Group Recommendation Model Based on User Common Intention and Social Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1368-1382. |
[9] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
[10] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
[11] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[12] | WU Wenzheng, LU Xianling. Session Recommendation Algorithm Combining Item Transition Relations and Time-Order Information [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 768-779. |
[13] | ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. |
[14] | CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng. Survey of Research on Construction Method of Industry Internet Security Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300. |
[15] | CHEN Jiaxing, HU Zhiwei, LI Ru, HAN Xiaoqi, LU Jiang, YAN Zhichao. Knowledge Graph Link Prediction Fusing Description and Structural Features [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/